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Abstract: Rapid biodiversity assessment and conservation planning require the use of easily quantified and
estimated surrogates for biodiversity. Using data sets from Québec and Queensland, we applied four methods
to assess the extent to which environmental surrogates can represent biodiversity components: (1) surrogacy
graphs; (2) marginal representation plots; (3) Hamming distance function; and (4) Syrjala statistical test for
spatial congruence. For Québec we used 719 faunal and floral species as biodiversity components, and for
Queensland we used 2348 plant species. We used four climatic parameter types (annual mean temperature,
minimum temperature during the coldest quarter, maximum temperature during the hottest quarter, and
annual precipitation), along with slope, elevation, aspect, and soil types, as environmental surrogates. To
study the effect of scale, we analyzed the data at seven spatial scales ranging from 0.01◦ to 0.10◦ longitude and
latitude. At targeted representations of 10% for environmental surrogates and biodiversity components, all
four methods indicated that using a full set of environmental surrogates systematically provided better results
than selecting areas at random, usually ensuring that ≥90% of the biodiversity components achieved the 10%
targets at scales coarser than 0.02◦. The performance of surrogates improved with coarser spatial resolutions.
Thus, environmental surrogate sets are useful tools for biodiversity conservation planning. A recommended
protocol for the use of such surrogates consists of randomly selecting a set of areas for which distributional
data are available, identifying an optimal surrogate set based on these areas, and subsequently prioritizing
places for conservation based on the optimal surrogate set.

Key Words: area selection, biodiversity, conservation planning, place prioritization, reserve network selection,
surrogate species

Efectividad de Sustitutos Ambientales para la Selección de Redes de Áreas de Conservación

Resumen: La evaluación rápida y la planificación de la conservación de biodiversidad requiere del uso de
sustitutos de la biodiversidad fácilmente estimados y cuantificados. Utilizando datos de Québec y Queensland,
aplicamos cuatro métodos para evaluar el grado en que los sustitutos ambientales pueden representar a los
componentes de la biodiversidad: (i) gráficos de subrogación; (ii) parcelas de representación marginal; (iii)
función de distancia Hamming; y (iv) prueba estadı́stica de Svrjala para congruencia espacial. Para Québec,
utilizamos como componentes de biodiversidad a 719 especies de fauna y flora, y para Queensland utilizamos
2348 especies de plantas. Consideramos como sustitutos ambientales a cuatro tipos de parámetros climáticos
(temperatura media anual, temperatura mı́nima durante el trimestre más fŕıo, temperatura máxima durante
el trimestre más cálido y precipitación anual), la pendiente, la altitud, el aspecto y los tipos de suelo. Para
estudiar el efecto de la escala, analizamos los datos en siete escalas espaciales que variaron de 0.01

◦
a 0.10

◦

de longitud y de latitud. En representaciones dirigidas a 10% de los sustitutos ambientales y los componentes
de la biodiversidad, los cuatro métodos indicaron que un conjunto completo de sustitutos ambientales sis-
temáticamente proporcionó mejores resultados que la selección de áreas al azar, asegurando generalmente que
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≥ 90% de los componentes de biodiversidad alcanzaron los objetivos de 10% en escalas más gruesas que 0.02
◦
.

El rendimiento de los sustitutos mejoró con resoluciones espaciales más gruesas. Por lo tanto, los conjuntos
de sustitutos ambientales son herramientas útiles para la planificación de conservación de la biodiversidad.
Un protocolo recomendado para el uso de tales sustitutos consiste en la selección aleatoria de un conjunto de
áreas de las que se dispone de datos de distribución, la identificación de un conjunto óptimo de sustitutos con
base en esas áreas y la subsiguiente definición de prioridades de sitios para la conservación con base en el
conjunto óptimo de sustitutos.

Palabras Clave: biodiversidad, especies sustitutas, planificación de la conservación, priorización de sitios,
selección de áreas, selección de red de reservas

Introduction

Systematic conservation planning requires the use of sur-
rogates to represent biodiversity in planning protocols
because the standard components of biodiversity (e.g.,
all species, entire ecosystems) cannot usually be surveyed
adequately within the temporal and budgetary constraints
of a planning process (Austin & Margules 1986; Reyers et
al. 2000). Surrogacy is a relationship between an “indica-
tor” parameter and an “objective” parameter (sometimes
called a “target” parameter, what we ultimately hope to
conserve). An indicator parameter represents or replaces
the objective parameter in planning protocols (Sullivan
& Chesson 1993). In theory the objective parameter for
biodiversity conservation is general biodiversity (Sarkar
& Margules 2002). By definitional convention, the objec-
tive parameter is usually taken to be the diversity of genes,
species, and ecosystems (Meffe & Carroll 1994). In prac-
tice this parameter is usually reduced to subsets of species
or other taxa, for instance, species at risk (Sarakinos et
al. 2001). Following Sarkar and Margules (2002), we call
this objective parameter the “true surrogate” because it
is intended to represent general (or true) biodiversity in
conservation planning.

Indicator parameters, hereafter called estimator surro-
gates, are intended to represent true surrogates. Estimator
surrogates must be (1) quantifiable (i.e., capable of quan-
titative assessment) and (2) capable of being estimated
(i.e., their distributions must be realistically obtainable,
for instance, from limited field surveys, remotely sensed
data, or theoretical models). Given a set of true surrogates,
whether a set of estimator surrogates adequately repre-
sents it is an empirical question (Landres et al. 1988).
The use of estimator surrogates rests on an implicit as-
sumption that there is a biological model linking the esti-
mator surrogate set and the components of biodiversity
that form the true surrogate set.

We developed and extended methods for assessing the
empirical adequacy of estimator surrogate sets. The most
stringent test requires that the spatial distribution of the
estimator surrogates correctly predicts the spatial distri-
bution of the true surrogate set. This problem is equiv-
alent to determining the adequacy of spatially explicit

niche models based on estimator surrogate sets as inputs.
Significant progress has been made in niche modeling
during the last decade (summarized in Scott et al. 2002).
Nevertheless, these methods, which generally predict the
occurrence of one species at a time, are still too cumber-
some for use in “rapid biodiversity assessment” (Nix et al.
2000; Guisan et al. 2002). Moreover, success in predict-
ing spatial distributions is too strong a requirement in a
planning context. In that context, the only requirement
is the adequate representation of the diversity of true sur-
rogates in a set of places selected to represent estimator
surrogates (a network of conservation areas), not the rep-
resentation of any particular true surrogate in a specified
area.

Consequently, attempts to assess the adequacy of esti-
mator surrogate sets should focus on whether (1) the use
of the estimator surrogates to prioritize places for inclu-
sion in a conservation area network achieves a targeted
representation of the true surrogates, (2) the diversity
of estimator surrogates in a region is spatially correlated
with the diversity of true surrogates in a set of selected
areas, and (3) the set of areas selected using the estimator
surrogate set is spatially congruent with the set of areas
that would have been selected using the true surrogate
set. These tests can be carried out even when the bio-
logical model presumed to connect true and estimator
surrogates has not been explicitly specified. But what an
adequate surrogate set must ultimately ensure is only the
full representation of the true surrogates; therefore, spa-
tial correlation and congruence are not as important as
adequate representation.

We present four methods of analysis. Surrogacy graphs,
which are a generalization of the species accumulation
curves used by Ferrier and Watson (1997) and Ferrier
(2002), answer question 1. Marginal representation anal-
ysis answers question 2. A distance measure, based on
the Hamming distance between binary strings, answers
question 3, as does a version of the Syrjala test (Syrjala
1996). We developed the method of surrogacy graphs in
earlier work (Sarkar et al. 2000; Garson et al. 2002a). To
the best of our knowledge, marginal representation analy-
sis is new. The Hamming distance measure is common in
ecology and evolutionary biology (e.g., Christensen et al.
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2002; Iwasa et al. 2004). The Syrjala test was previously
used by Lawler et al. (2003).

We also used distributional data from two widely differ-
ing regions, Québec and Queensland, to study the perfor-
mance of environmental parameter estimator surrogates.
A general motivation for this analysis came from several
reports indicating that using surrogates to represent bio-
diversity performs no better than selecting conservation
areas at random (Andelman & Fagan 2000; Lund & Rah-
beck 2002). (Such pessimistic results generally have been
obtained when taxa have been used as estimator surro-
gates, however, and even then most authors have ex-
pressed guarded optimism about the use of surrogates
[Pharo et al. 2000; Fleishman et al. 2001].)

The particular interest in environmental parameter es-
timator surrogates is that they can be easily obtained
through a combination of remotely sensed data, field data,
and climate models. Faith and Walker (1996) advocated
using a specific measure of environmental diversity (ED)
as an estimator surrogate. The ED value of an area is the
decrease in the summed distance from all points in the
ordination space to the nearest point already selected
for conservation. Maximizing the ED value is supposed
to maximize true surrogate diversity. Using all available
species in Europe as true surrogates, although only at a
very coarse spatial resolution of 50 × 50 km2, Araújo et al.
(2001) criticized the use of ED, arguing that it does little
better than select cells randomly. However, Araújo et al.
used a measure of ED that differed from that of Faith and
Walker (1996) (see Faith [2003] for a response and Araújo
et al. [2003] for a rejoinder). The ED, though, represents
only one measure of environmental diversity. We used
simple partitions of environmental parameter classes as
estimator surrogate sets (Ferrier & Watson 1997; Arm-
strong & van Hensbergen 1999). We also studied the
performance of several subsets of these sets in an at-
tempt to find an optimal surrogate subset. Kirkpatrick and
Brown (1994) used a different hierarchical partitioning of
environmental parameter classes as estimator surrogate
sets.

Additionally, we studied the effect of spatial scale on
the performance of estimator surrogate sets. We analyzed
the data at seven spatial scales ranging from 0.01◦ longi-
tude × 0.01◦ latitude to 0.10◦ longitude × 0.10◦ latitude.
For surrogacy graphs, it was intuitively clear that both
the use of estimator surrogates and the random selection
of areas should perform better at coarser spatial resolu-
tions than at finer ones because larger cells will contain
more true surrogates. We analyzed whether the relative
performance of the estimator surrogates compared with
random selection improved at coarser scales and, if so,
whether there was a limiting scale beyond which there
was no further gain (in which case, that should be the
preferred scale for the use of estimator surrogates in con-
servation planning). A previous study of the effects of spa-
tial scale, using birds as estimator surrogates for species

at risk (the true surrogates) in southern Québec, yielded
positive answers to both questions (Garson et al. 2002a).

Spatial scale analysis, in the sense of a comparative
study of the performance of estimator surrogate sets at
different spatial resolutions, is relatively new in surro-
gacy analysis. Ferrier and Watson (1997) analyzed two
Australian data sets at two spatial resolutions of 0.04 and
25.0 km2. Andelman and Fagan (2000) considered data
at different spatial resolutions but did not perform any
comparative analyses. Their data at different resolutions
came from different regions. M. Tognelli (unpublished
data) used all mammal species of Latin America as true
surrogates, and several estimator surrogate sets, includ-
ing World Conservation Union (IUCN)-listed (vulnerable,
endangered, or critically endangered) species, geograph-
ically rare species, flagship species, and large mammal
species. He analyzed data at the continental scale for Latin
America and the national scale for Brazil, but the spatial
resolution of the data (land-unit size) remained the same.

The use of estimator surrogate sets leads to testable
predictions and we describe an explicit protocol for such
tests. To the best of our knowledge, such a protocol has
not been explicitly suggested.

Methods

For both regions, we used a geographic information sys-
tem (GIS) model that consisted of a set of cells, �(σj ∈
�, j = 1, 2, . . . , n), with each cell representing an area for
potential inclusion in a conservation area network. Asso-
ciated with this set were sets of surrogates, �(λi ∈ �, i =
1, 2, . . . , m). These could be sets of both estimator and
true surrogates. The basic data consisted of the matrix
P = ( pij) (i = 1, 2, . . . , n; j = 1, 2, . . . , m), where pij is
the expectation of finding λj (the jth surrogate) at σi (the
ith cell). Because the data were presence and absence,
the pij were 1 or 0, but our methods could be used with
probabilistic data (Sarkar et al. 2004).

Surrogate Sets

We analyzed Québec and Queensland because reliable
presence-absence point data from records and surveys
were available. These were the cells used in this analysis.
For Québec the true surrogate set consisted of 719 flo-
ral and faunal species, over 50% of which were species at
risk. Floral data covered all available families, whereas fau-
nal data were restricted to vertebrates (additional details
in Sarakinos et al. 2001). Because species at risk are usu-
ally regarded as important components of biodiversity,
they have often been used as true surrogates (Dobson et
al. 1997; Sarakinos et al. 2001; Garson et al. 2002a). More-
over, results of at least one study show that if species at
risk are among the estimator surrogates and all species
with available distributions are used as true surrogates,
species at risk perform better than other groups (Lawler
et al. 2003).
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For Queensland the true surrogate set consisted of 2348
plant species (195 families; additional details in Moritz et
al. 2001). The motivation behind this choice of a true sur-
rogate set was that, in practice, extensive varied repre-
sentation of any kingdom (and, preferably, all kingdoms)
comes as close as possible to the ideal of using all species.
Results of some studies show that if endangered plant
species are used as estimator surrogates and other endan-
gered species are used as true surrogates, the former max-
imize the protection of the latter (Dobson et al. 1997).

We chose estimator surrogate sets consisting of those
environmental parameters for which global coverages
can be freely downloaded and computed. Thus, any con-
servation planner has access to these data. The sets in-
cluded four climatic parameters (annual mean tempera-
ture, minimum temperature during the coldest quarter,
maximum temperature during the hottest quarter, and
annual precipitation), along with slope, elevation, aspect,
and soil types. The climate layers were created from the
GTOPO30 DEM, which is a 30 arc-second digital eleva-
tion map (DEM) available from the U.S. Geological Survey
(USGS; 1998), and the worldwide agroclimatic database
of the Food and Agricultural Organization (FAOCLIM; FAO
2000). We used ANUSPLIN 4.1 (Hutchinson 2000) and
ANUCLIM 5.1 (Houlder et al. 2000) software packages to
compute these climate parameters. Procedures used for
running ANUSPLIN and ANUCLIM were identical to those
used in the Australian BioRap analyses (Hutchinson 1991;
Hutchinson et al. 1996). In ANUSPLIN, the SELNOT and
SplineB programs were used with the same default values
as in the BioRap analyses.

We obtained elevation data from the GTOPO30 DEM.
We created slope and aspect layers with the Spatial Ana-
lyst extension in ArcGIS 8.1 (ESRI 2002) from the DEM as
specified in the Hydro 1K elevation derivative database
methodology also available from the USGS (1998). Soil
classifications were obtained from the world soil re-
sources map (FAO 1993).

We divided annual mean temperature, annual precip-
itation, and elevation parameters into 10 equal interval
classes. In general, finer divisions of environmental sur-
rogate parameters are expected to give better represen-
tation of true surrogates. Computational complexity in-
creases, however, with the number of classes. We chose
10 classes because preliminary results indicated that using
more classes did not affect results. The minimum temper-
ature of the coldest period of the year and the maximum
temperature of the warmest period of the year were di-
vided into four equal interval classes to ensure that each
class had the same range as each annual mean temperature
class. The use of equal intervals assumed that protecting
sets of cells that contain all four classes will ensure that
biotic features found in rare temperature regimes are ad-
equately represented in a conservation plan. Slope was
divided into five classes based on standard deviations.
The use of standard deviations assumed that mid-range

slopes are more important for biodiversity than extremes.
In these regions this pattern was found for the richness of
true surrogate distributions. Soil data were divided into
four classes for Québec and two classes for Queensland,
corresponding to the soil association types in the world
soil map (FAO 1993). These are the coarsest measures
in our study. Aspect data were divided into the standard
nine classes of 40◦ each. Preliminary results indicated that
a finer division did not affect results.

For each region we analyzed four different estimator
surrogate sets. The climatic parameter classes and soil
type classes were common to all sets. In the others, slope,
aspect, and elevation were sequentially removed because
these were also used to model the climatic parameters.
For Québec the initial set (1) had 56 surrogates. Subse-
quent removal of parameter types led to 51, 42, and 32
surrogates in each set 2, 3, and 4, respectively. For Queens-
land we started with 54 surrogates in set 1 that were then
reduced to 49, 40, and 30 surrogates in sets 2, 3, and 4.
Because the environmental surrogate sets consist of mod-
eled data, these were known for every cell in a region. But
because our data for the true surrogates were point data
from records and surveys, these were available for only a
fraction of the cells. We used only those cells in which at
least one true surrogate was present in our analyses.

Methods for Assessing Surrogates

SURROGACY GRAPHS AND PLACE PRIORITIZATION ALGORITHMS

Surrogacy graphs are an extension and generalization of
species accumulation curves developed by Sarkar et al.
(2000) and Garson et al. (2002a). Typically, a species ac-
cumulation curve has the number of cells selected in a
potential network as the independent variable and the
number of species represented as the dependent variable.
Surrogacy graphs are of two types. Both have the fraction
of true surrogates that have met their target as the depen-
dent variable. In the first type, the independent variable
is the fraction of estimator surrogates that have met their
specified targets. In the second, it is the fraction of the to-
tal area so far selected. Each estimator and true surrogate
may have a different specified target of representation de-
pending on the biological and other requirements for its
conservation. For instance, an endangered species may
have a target close to 100%, whereas a common alien
species may have a target of 0% (Sarakinos et al. 2001).
The level of representation for true surrogates reached in
a surrogacy graph measures the performance of an esti-
mator surrogate set. If all true surrogate targets are set to
one representation, the second type of surrogacy graph
reduces to a species accumulation curve. Here, we used
a common target of 10% for both true and estimator sur-
rogate sets.

We used the ResNet software package to carry out place
prioritization for cell selection (Garson et al. 2002b). This
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package implements a rarity-complementarity algorithm
belonging to the family of algorithms introduced by Mar-
gules et al. (1988). Initialization was by rarity, following
the protocol of Sarkar et al. (2002). We used the Surrogacy
software package to compute surrogacy graphs (Garson
& Sarkar 2002). Each curve in a surrogacy graph that cor-
responded to an estimator surrogate set represented an
average of 100 different solutions generated by random-
ization of the order of entries in the data set. Randomiza-
tions led to new solutions because the place prioritization
algorithm selected cells based on lexical position if there
was no unique best cell determined by rarity and com-
plementarity (Sarkar et al. 2002). The “random” graph
shows the result of randomly selecting the same num-
ber of cells as was picked by the estimator surrogate sets
when they achieved either the level of representation or
the area specified by the x-axis. The random graphs show
the average of 100 such random selections (Figs. 1–4).

We used standard deviation to represent the range of
variation in our graphs because the standard errors were
too small to depict. We describe results as significantly
different if there was no overlap of error bars of 2 SDs.
Assuming normality and independence of two sets of
results, this corresponds to a p value of <0.003. This
method of computing significance results, however, does
not take into account the possibility of sampling error.
Given the large number of cells in our data set (Table 1),
sampling error is likely to be significant for Queensland
only at the coarsest scales.

MARGINAL REPRESENTATION CONTRIBUTION

Surrogacy graphs can be used only when surrogates have
a specified target of representation. The use of targets
in conservation planning (including cell selection), how-
ever, has been criticized recently because most targets
that have been used in practice do not have a firm biolog-
ical basis (Soulé & Sanjayan 1998). Consequently, it is of
some interest to develop a measure—one that is indepen-
dent of target specification—of the correlation between
the contributions an individual cell makes in represent-
ing true and estimator surrogates. For either type of sur-
rogate, with the notation introduced above, the marginal
representation (ρj), of cell σj is

ρ j =
∑
k∈�

pkj

(∑
l∈�

∑
k∈�

pkl − ∑
k∈�

pkj

) ,

provided that the denominator is not equal to 0. The nu-
merator consists of the expected number of surrogate
occurrences in the cell σj (Sarkar et al. 2004). The denom-
inator is the expected number in all other cells. Thus, ρj

provides a relative measure of the surrogate representa-
tion that σj adds to the other cells.

We used marginal representation plots, which are two-
dimensional plots of the true surrogate and estimator sur-

Figure 1. Surrogacy graphs for Québec: (top) Québec
at the 0.01◦ × 0.01◦ longitude × latitude scale. Type I
surrogacy graph: x-axis, percentage of estimator
surrogates that have achieved their targets, and y-axis,
percentage of true surrogates that have achieved their
targets. Error bars show standard deviations from 100
different runs rather than standard errors because the
latter were too small to be depicted. (bottom) Québec
at the 0.10◦ × 0.10◦ longitude × latitude scale. Type II
surrogacy graph: x-axis, percentage of area that has
been selected and y-axis, percentage of true surrogates
that have achieved their targets.

rogate ρj value for each cell in a region, to analyze cor-
relations between the marginal representations of the es-
timator and true surrogates. Preliminary analysis showed
a nonlinear relationship between the marginal represen-
tations of the estimator and true surrogates. Low values
were obtained for the Pearson product-moment correla-
tion coefficient even when the marginal representation
plots visually indicated a clear association between the
data. For this reason, we used the nonparametric Spear-
man’s rank correlation test for nonlinear correlations.

SPATIAL CONGRUENCE ANALYSIS

The spatial congruence between cells selected based on
the true surrogate set and those selected based on the
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Figure 2. Québec surrogacy scale analysis: x-axis, cell
boundary size in longitude/latitude, and y-axis,
representation level of true surrogates when 100%
representation of estimator surrogates has been
achieved. The error bars show SDs from 100 different
runs rather than SEs because the latter were too small
to be depicted.

Figure 3. Surrogacy graphs for Queensland: (top)
Queensland at the 0.01◦ × 0.01◦ longitude × latitude
scale; (bottom) Queensland at the 0.10◦ × 0.10◦

longitude × latitude scale. For further detail, see the
legend for Fig. 1.

Figure 4. Queensland scale analysis: x-axis, cell
boundary size in longitude/latitude, and y-axis,
representation level of true surrogates when 100%
representation of estimator surrogates has been
achieved. The error bars show standard deviations
from 100 different runs rather than standard errors
because the latter were too small to be depicted.

Figure 5. Marginal species representation plots: (top)
Québec, environmental surrogate set 1 at the 0.01◦ ×
0.01◦ longitude × latitude scale (each point represents
the marginal representation of the estimator
surrogates [x-axis] and true surrogates [y-axis] of an
individual cell) and (bottom) Queensland,
environmental surrogate set 1 at the 0.10◦ × 0.10◦

longitude × latitude scale.
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Table 1. Landscape properties of the areas examined for Québec and Queensland at the seven spatial scales of our analysis.

Québec Queensland

Scale (degrees) number of cells average area km2 (SD) number of cells average area km2 (SD)

0.01 33,967 0.850 1.18
(0.0190) 3,828 (0.00519)

0.02 23,474 3.38 4.72
(0.0788) 2,227 (0.0223)

0.04 12,940 13.4 18.9
(0.322) 931 (0.0978)

0.05 10,125 21.0 29.5
(0.506) 693 (0.158)

0.06 8,156 30.1 42.4
(0.733) 518 (0.229)

0.08 5,589 53.4 75.4
(1.31) 350 (0.446)

0.10 3,890 83.3 118
(2.10) 251 (0.676)

estimator surrogate set is another measure of the perfor-
mance of estimator surrogate sets. We used the Hamming
distance between strings of 0s (absence) and 1s (pres-
ence) as a quantitative measure of the spatial congruence
between the set of cells selected by true surrogates and
that selected by estimator surrogates. Our distance func-
tion consisted of the number of unshared cells between
the two sets divided by the total number of cells in both
the sets taken independently (that is, shared cells were
counted twice). Let A be one set of cells and B be the
other. Then the Hamming distance between A and B is
given by (|A ∪ B| − |A ∩ B|)/(|A| + |B|), where the func-
tion “|·|” indicates the cardinality of the set inside it. This
measure varies between 0 and 1. If the two sets are iden-
tical, the distance is 0. If they are disjoint, the distance
is 1. There were 100 distance calculations between sets
selected by true and estimator surrogate sets for each sur-
rogate set (1–4) at each scale and for each data set.

We used the statistical Syrjala test, a generalization
of the two-sample Cramér-von Mises test, to determine
whether the spatial distribution of cells selected by the
true surrogates was identical to that selected by the es-
timator surrogates (Syrjala 1996). Again, there were 100
pair-wise comparisons between sets selected by true and
estimator surrogate sets for each surrogate set (1–4), at
each scale, and for each data set. We used a uniform den-
sity function over the selected cells and 100 permuta-
tions to determine the level of significance of the test
results.

Spatial Resolution/Scale

Québec and Queensland were both analyzed at seven spa-
tial resolutions: 0.01◦ of longitude × 0.01◦ of latitude,
0.02◦ × 0.02◦, 0.04◦ × 0.04◦, 0.05◦ × 0.05◦, 0.06◦ ×
0.06◦, 0.08◦ × 0.08◦, and 0.10◦ × 0.10◦. The number of
cells with data decreased at coarser scales for both regions

(Table 1). At coarser scales, cells were assumed to contain
each of the surrogates represented at finer scales.

Results

For the Québec data set at the spatial resolution of 0.01◦,
surrogacy graphs were approximately linear for both
types of surrogacy graph (Fig. 1). When the spatial res-
olution was 0.10◦, performance was enhanced but this
linearity was lost for the second type of surrogacy graph
(Fig. 1), whereas the first type remained linear. Intermedi-
ate spatial scales produced intermediate results in perfor-
mance (data not shown). At the finest spatial scale, the use
of environmental surrogates performed no better than se-
lecting cells at random with respect to representing true
surrogates. At coarser scales, however, the use of the sur-
rogates led to significantly better performance. The full
estimator surrogate set 1 performed better than any of
the subsets. The smallest subsets (3 and 4) performed
no better than random even at coarser spatial scales. The
full estimator surrogate set 1 achieved a representation of
97.90% at the 0.10◦ scale. There was little change, though,
in the performance of the full estimator surrogate set 1
with spatial scale (it varied between 92.57% and 98.16%;
Fig. 2).

The Queensland data produced similar surrogacy
graphs (Fig. 3; intermediate scales yielded intermediate
results [data not shown]). With coarser spatial scales, the
full estimator surrogate set 1 performed better at rep-
resenting true surrogates than cells selected at random
(Fig. 3). At finer spatial scales, however, the smaller esti-
mator surrogate sets (for instance, 4) performed worse.
The performance of the full estimator surrogate set 1 was
appreciably better at the 0.10◦ scale (97.93%) than at the
0.01◦ scale (88.17%; Fig. 4). Even though there was no
strict monotonic increase through the intermediate scales
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(for any estimator surrogate set), there was a clear trend.
A significant improvement over random selection began
at the 0.02◦ scale, at least for the full estimator surrogate
set 1 (Fig. 4).

The Spearman rank test indicated a significant corre-
lation ( p < 0.01) between marginal representations of
the estimator and true surrogates for both data sets and
all surrogate sets at all scales except for estimator surro-
gate sets 3 and 4 for Québec at the finest scale (Fig. 5).
For Queensland the correlation was weakest for estima-
tor surrogate set 3 at all scales. The correlations showed
a nonmonotonic increase with coarser scales. The high-
est correlations were rS = 0.58 for estimator surrogate
set 2 for Québec and 0.71 for Queensland for estimator
surrogate set 4, both at the 0.10◦ scale.

The average Hamming distances between solutions
based on estimator and true surrogates decreased with
spatial scale for both Québec and Queensland (Table 2).
This increase in congruence was expected. At coarser spa-
tial scales, on average, each cell contained a larger num-
ber of different surrogates, but there were fewer cells,
allowing less flexibility in selecting cells to achieve sur-
rogate representation targets. In each case the set of cells
selected using an estimator surrogate set was being com-
pared with the set selected using the true surrogate set;
both sets had a target of 10% for the representation of
surrogates. For both data sets, results were similar for all
estimator surrogate sets. Lower figures were obtained for
Queensland, which produced results with greater vari-
ability. For both Québec and Queensland, the distance
between solutions based on the estimator surrogates and
solutions based on the true surrogates depended on scale
(one-way analysis of variance, for all four surrogate sets).
Although the distance between the solutions did not

Table 2. Means (SD) of the Hamming distances for 100 different solutions at each scale for each estimator surrogate set for Québec (top pair of
numbers) and Queensland (bottom pair of numbers).∗

Estimator surrogate set 0.01◦ 0.02◦ 0.04◦ 0.05◦ 0.06◦ 0.08◦ 0.10◦

0.918 0.895 0.877 0.896 0.855 0.861 0.862
1 (0.00366) (0.00219) (0.00583) (0.00517) (0.00697) (0.00542) (0.00652)

0.947 0.915 0.910 0.895 0.925 0.883 0.702
(0.00595) (0.0105) (0.0128) (0.0218) (0.0140) (0.0575) (0.0282)
0.918 0.898 0.901 0.890 0.871 0.876 0.919

2 (0.00350) (0.00218) (0.00526) (0.00563) (0.00575) (0.00626) (0.00377)
0.958 0.904 0.907 0.892 0.919 0.883 0.692

(0.00551) (0.0110) (0.0126) (0.0234) (0.0115) (0.0575) (0.0273)
0.904 0.912 0.901 0.872 0.882 0.863 0.919

3 (0.00225) (0.00479) (0.00585) (0.00670) (0.00533) (0.00620) (0.00406)
0.962 0.932 0.906 0.889 0.915 0.890 0.684

(0.00617) (0.0129) (0.0109) (0.0232) (0.0119) (0.0549) (0.0281)
0.919 0.907 0.889 0.901 0.894 0.877 0.872

(0.00406) (0.00207) (0.01362) (0.00636) (0.00622) (0.00645) (0.00637)
4 0.962 0.939 0.898 0.883 0.902 0.864 762

(0.00464) (0.0115) (0.00847) (0.0201) (0.0164) (0.0499) (0.0257)

∗In each case what is being compared are the set of cells selected using an estimator surrogate set and the set selected using the true surrogate
set, both with a target of 10% for the representation of surrogates.

decrease monotonically with increasing scale (data not
shown), a simple linear model approximately fit the pat-
tern. For Québec surrogate set 1 had the best fit with the
linear model (r = 0.881), whereas for Queensland surro-
gate set 4 had the best fit (r = 0.720). The variance in the
distance at a given scale did not decrease with increasing
scale (data not shown).

With a significance level of α = 0.05 the Syrjala test did
not reject the null hypothesis that the two maps (gener-
ated using true and estimator surrogate sets) were identi-
cal for most of the scales and estimator surrogate sets. For
both Québec and Queensland, no p value differed from
1 at the 0.01◦ and 0.02◦ scales for all four estimator sur-
rogate sets. For Queensland the Syrjala test did not reject
the null hypothesis at any scale for any estimator surrogate
set. For Québec the test did not reject the null hypothe-
sis for all estimator surrogate sets at the 0.04◦, 0.05◦, and
0.06◦ scales. At the 0.08◦ scale, the null hypothesis was
rejected for 7% of the solutions for estimator surrogate
set 4. For all other estimator surrogate sets, the null hy-
pothesis was never rejected. At the 0.10◦ scale, the null
hypothesis was never rejected for estimator surrogate set
1. For estimator surrogate sets 2 and 3, it was rejected
for 7% and 4% of the solutions. For estimator surrogate
set 4, however, it was rejected 64% of the time. As was
the case in the rest of our analysis, the smallest estimator
surrogate set (4) performed worse than all the others.

Discussion

The surrogacy graphs present our most important results.
They directly address the critical question of whether the
use of environmental estimator surrogate sets results in
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an adequate representation of the true surrogates in a set
of selected conservation areas. At least for Québec and
Queensland, the use of environmental surrogates was a
significant improvement over random selection of conser-
vation areas at larger spatial scales (more specifically, at
and above the 0.02◦ scale). Moreover, the routine achieve-
ment of a representation level of more than 90% of the
true surrogates should be regarded as more than adequate
when such coarse-grained environmental surrogate sets
(only 56 classes for Québec and 54 for Queensland) are
all that can be used for conservation planning. Although
our results show that estimator surrogate set performance
improved as spatial scale increased, the results were not
as striking as those obtained by Garson et al. (2002a). For
all these results, though, our tests of significance did not
take the possibility of sampling error into account. Such
error is likely to increase at coarser scales as the number
of cells with data decreases.

The marginal representation analysis showed signifi-
cant nonlinear correlations between the marginal con-
tributions of estimator and true surrogates to the surro-
gate representation within individual cells. Our distance
analysis, however, showed that the set of cells selected
by the estimator and true surrogate sets were typically
very different. Nevertheless, the representation targets
were achieved to a high degree. This result supports the
claim made in the Introduction that requiring success at
predicting spatial distributions is an unnecessarily strin-
gent requirement for the use of estimator surrogates. The
Hamming distance, however, merely measures whether
or not a cell is present in two sets without taking spatial
distances between the selected cells in the two sets into
account. The Hamming distance remains appropriate as
a measure of the difference between two sets of selected
cells for conservation area networks, when what matters
is whether an individual cell is included or not. But it is
not an adequate measure of the extent to which two sets
of selected cells are spatially dissimilar. The results of the
Syrjala test suggest that the cells selected by the estimator
and true surrogate sets remained spatially correlated, at
least to the extent that the null hypothesis that the maps
are identical could not be rejected. (The smallest estima-
tor surrogate set, set 4, was an exception for the Québec
data set.)

These optimistic results contrast with those reported
by Araújo et al. (2001), who used a measure of ED (al-
though a different one than Faith and Walker [1996]).
We used a direct partitioning of environmental parameter
types to generate our estimator surrogate sets. Our opti-
mistic conclusions should be treated with caution. We an-
alyzed only two different data sets and, even though they
are from different biogeographic realms and latitudes,
these analyses must be repeated for a representative va-
riety of other regions before any definitive recommenda-
tion can be made about using environmental surrogate
sets. Moreover, any assessment of the performance of an

estimator surrogate set depends on the choice of that set,
the choice of a true surrogate set, and the nature and
quality of the available data. We pointed out in the Intro-
duction that the choice of species at risk (for Québec)
and as many varied species in a kingdom as possible (for
Queensland) are reasonable choices for true surrogates.
Other plausible true surrogate sets should also be tested.

We used point data from records and surveys that were
interpreted as presence and absence data. Even if these
data are misinterpreted as presence-only data, however,
it would not detract from the reliability of our conclu-
sions. A cell evaluated as containing a true surrogate using
presence-only data would also be evaluated as such using
presence and absence data. If the data were presence
only, the procedure we used was conservative. It would
lead to a higher representation than targeted for the true
surrogates because some cells would contain true surro-
gates that were not recorded in the presence-only data.

Should the adequacy of the use of environmental sur-
rogate sets survive further scrutiny (or some other ade-
quate estimator surrogate sets be found), we suggest the
following protocol for their use and testing: (1) select a
true surrogate set and a group of candidate estimator sur-
rogate sets; (2) divide the planning region into cells of
the appropriate size and project the region into an envi-
ronmental space; (3) randomly select a set of locations
(the calibration set) from the environmental ordination
space (the larger this set, the better); (4) survey the cells
in (geographical) space for the true and all the estima-
tor surrogate sets; (5) construct surrogacy graphs for the
sampled cells to determine the best or “optimal” estima-
tor surrogate set; and (6) use the optimal estimator surro-
gate set for conservation planning for the entire region.
In principle, this protocol can be carried out for any po-
tential estimator surrogate set without prior knowledge
of its adequacy. However, such prior knowledge—for in-
stance, knowing that a particular type of environmental
surrogate set is likely to be adequate—will help determine
what group of candidate estimator surrogate sets should
be analyzed. In practical planning contexts, in the pres-
ence of temporal and budgetary constraints, this type of
prior knowledge is critical for rational planning. Caro and
O’Doherty (1999) also argue, without providing a proto-
col, that pilot studies should be carried out before any
species sets are adopted as surrogates.

This protocol can also be easily extended to make
testable predictions. Stages 1–5 can be viewed as a pro-
cess of calibration of estimator surrogate sets. Stage 6 can
then be replaced with, randomly select a second disjoint
set of cells (the test set) in geographical space. In stage
7 use surrogacy graphs to predict the expected number
of true surrogates that would satisfy their targets in cells
that are selected using the optimal estimator surrogate
set. Finally in stage 8 survey these cells to determine if the
predictions are correct. If resources permit, such predic-
tive tests are obviously recommended before one uses an
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estimator surrogate set to select a conservation area net-
work. Such a test can be carried out for any candidate esti-
mator surrogate set, although there is little motivation for
performing it on nonoptimal sets. In the general context
of determining whether there are any adequate estimator
surrogate sets, successful predictive tests would increase
confidence in our results, which support the claim that
such surrogate sets are useful tools for biodiversity con-
servation planning.
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