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Abstract: Systematic conservation planning typically requires specification of quantitative representation
targets for biodiversity surrogates such as species, vegetation types, and environmental parameters. Targets
are usually specified either as the minimum total area in a conservation-area network in which a surrogate
must be present or as the proportion of a surrogate’s existing spatial distribution required to be in the network.
Because the biological basis for setting targets is often unclear, a better understanding of how targets affect
selection of conservation areas is needed. We studied how the total area of conservation-area networks depends
on percentage targets ranging from 5% to 95%. We analyzed 12 data sets of different surrogate distributions
from 5 regions: Korea, Mexico, Québec, Queensland, and West Virginia. To assess the effect of spatial resolution
on the target-area relationship, we also analyzed each data set at 7 spatial resolutions ranging from 0.01◦

× 0.01◦ to 0.10◦ × 0.10◦. Most of the data sets showed a linear relationship between representation targets
and total area of conservation-area networks that was invariant across changes in spatial resolution. The
slope of this relationship indicated how total area increased with target level, and our results suggest that
greater surrogate representation requires significantly more area. One data set exhibited a highly nonlinear
relationship. The results for this data set suggest a new method for setting targets on the basis of the functional
form of target-area relationships. In particular, the method shows how the target-area relationship can provide
a rationale for setting targets solely on the basis of distributional information about surrogates.

Keywords: conservation objectives, conservation planning, conservation site prioritization, representation tar-
gets, reserve selection, scale analysis, selection of conservation areas

Influencia de los Objetivos de Representación sobre el Área Total de Redes de Áreas de Conservación

Resumen: La planificación sistemática de la conservación t́ıpicamente requiere la especificación de obje-
tivos de representación para sustitutos de la biodiversidad como especies, tipos de vegetación y parámetros
ambientales. Los objetivos usualmente son especificados como el área total mı́nima en una red de áreas de
conservación en la que un sustituto debe estar presente o como la proporción de la distribución espacial del
sustituto que se requiere en la red. Debido a que la base biológica para definir objetivos a menudo es poco
clara, se requiere un mejor entendimiento de cómo afectan los objetivos a la selección de áreas de conser-
vación. Estudiamos cómo el área total de las áreas de conservación depende de objetivos porcentuales que
vaŕıan entre 5% y 95%. Analizamos 12 conjuntos de datos de distribuciones sustitutas de regiones diferentes:
Corea, México, Quebec, Queensland y Virginia del Oeste. Para evaluar el efecto de la resolución espacial
sobre la relación objetivo-área también analizamos cada conjunto de datos en 7 resoluciones espaciales entre
0.01◦ × 0.01◦ y 0.10◦ × 0.10◦. La mayoŕıa de los conjuntos de datos mostraron una relación lineal entre
los objetivos de representación y el área total de las redes de áreas de conservación que fue invariable en
los cambios de resolución espacial. La pendiente de esta relación indicó cómo aumento el área total con el
nivel de representación, y nuestros resultados sugieren que una mayor representación sustituta requiere de
más área significativamente. Un conjunto de datos mostró una relación no lineal. Los resultados para este
conjunto de datos sugieren un nuevo método para definir objetivos sobre la base de una forma funcional de
la relación objetivo-área. En particular, el método muestra que la relación objetivo-área puede proporcionar
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un fundamento para la definición de objetivos con solamente la base de información sobre la distribución
de sustitutos.

Palabras Clave: análisis de escala, objetivos de conservación, objetivos de representación, planificación de la
conservación, priorización de sitios de conservación, selección de áreas de conservación, selección de reservas

Introduction

Area prioritization algorithms for the selection of
conservation-area networks (CANs) are now an indis-
pensable part of systematic conservation planning (Mar-
gules & Pressey 2000; Groves et al. 2002; Sarkar et
al. 2006; Margules & Sarkar 2007). In addition to ad-
dressing socioeconomic concerns and the processes that
threaten conservation goals, implementing these algo-
rithms in practical-planning contexts requires specifica-
tion of quantitative targets (i.e., minimal levels of rep-
resentation of features of conservation interest, such as
species, other taxa, or vegetation types). Targets are typ-
ically specified as the total extent (in square kilometers)
of surrogates required to be present in a CAN or the
proportions of total distributions of surrogates required
to be represented. Without explicit, quantitative targets
the adequacy of conservation plans cannot be evaluated
properly (Pressey et al. 2003).

Ideally, if the second type of target is used, it will re-
flect the representation levels required to ensure the per-
sistence of surrogates such as species. For some species
the choice is fairly clear. To have any chance of per-
sistence, targets of 100% are likely required for highly
endangered species, whereas 0% is probably sufficient
for widespread, vagile species. For most species that are
not at these extremes, however, common methods for
assessing persistence have serious shortcomings, espe-
cially in guiding conservation planning (Simberloff 1988;
Sarkar 2005). The most common method for assessing
persistence—population viability analysis—focuses on
single species (or occasionally a few species at a time)
and rarely considers more than a few factors affecting
population decline. As such, it potentially plays a useful
role in narrow contexts focused on conserving individ-
ual species, but it provides little insight into what targets
are needed to conserve multispecies assemblages facing
numerous threats (Fieberg & Ellner 2000). The exten-
sive data required to estimate parameters used in these
analyses with sufficient precision are also rarely avail-
able or obtainable given the temporal and budgetary con-
straints of practical conservation planning (Ruggiero et
al. 1994; Burgman et al. 2001). In a recent review, Tear
et al. (2005) argue, “Although viability analyses have oc-
cupied research scientists for nearly two decades now,
conservation practitioners are still typically at a loss when
establishing a quantitative target.”

Without an adequate understanding of what species
persistence requires, target choices are typically made

for nonbiological reasons. The widely adopted goal of
protecting 10–12% of the total area of nations proposed
by several conservation organizations (e.g., WCED 1987;
IUCN 1993) has been criticized for being motivated by
political expediency rather than ecology (Soulé & San-
jayan 1998). This goal may effectively function as an aspi-
rational benchmark for increasing the area designated for
conservation in political contexts, but it is not a represen-
tation target, and it is not based on scientific studies of
what biodiversity conservation requires. A recent com-
prehensive review shows that the goal of 10–12% of a
nation’s total area falls far short of what conservation
planning analyses suggest is required for many regions
(Svancara et al. 2005). Results of detailed studies of the
Cape Floristic Region of South Africa support a similar
conclusion (Pressey et al. 2003; Desmet & Cowling 2004).

Because neither the 10–12% goal nor population viabil-
ity analyses have provided reliable guidance about what
representation targets are required to ensure species
persistence, a clear understanding of how targets af-
fect CAN selection is needed. Such an understanding
may yield a scientific basis for setting targets, and re-
searchers have begun to address this issue. Pressey and
Logan (1998) found that total CAN area for land sys-
tems in New South Wales increased with target level
and spatial resolution for 2 resolutions and 3 target
levels. Warman et al. (2004) analyzed how area size,
surrogate type, and target level affected area prioriti-
zation for species in the Okanagan region of British
Columbia and found results similar to those of Pressey and
Logan (1998).

New procedures for setting targets as the proportion
of a surrogate’s distribution are also being developed.
Burgman et al. (2001) based their method on simple pop-
ulation models for setting targets to ensure the persis-
tence of vascular plants. Their method produces targets
of 100, 100, and 54% of the distributions of 3 Queens-
land plant species. Other researchers found that at least
40–50% of habitats are required to ensure persistence
(Fahrig 2001; Flather & Bevers 2002). Pressey et al. (2003)
propose several heuristic principles to help set targets
for 102 habitat types, 364 plants of the Proteaceae fam-
ily, and 345 vertebrates in the Cape Floristic Region of
South Africa. Results were 10–55% for habitat types, 10–
100% for plants, and 10–100% for vertebrates. Desmet
and Cowling (2004) set targets with a species–area
relationship and found that targets of 14–30% of 42
vegetation types in the Succulent Karoo (South Africa)
are required to represent 70–80% of plant species. The
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targets established in the last 2 sets of studies are based
on explicit considerations of representation alone and
are thus lower than those required for biodiversity per-
sistence in the face of fragmentation and other such ef-
fects. Nevertheless, even these representation targets are
geared implicitly toward ensuring persistence, although
they do not explicitly address the ecological processes
involved.

Most of these new methods focus on setting targets
for specific biodiversity surrogates and require additional
data about the demography, abundance, and other vital
statistics of these surrogates. These data should be used
whenever available, but they often are not, especially
when large numbers of surrogates are being considered.
We therefore propose a new method, the basis of which
is the relationship between uniform targets and total CAN
area that does not require such data. This relationship
can provide a rationale for setting targets that can com-
plement, and be refined by, other target-setting methods.

Higher targets are beneficial from a conservation stand-
point because they select a larger percentage of the dis-
tribution of each biodiversity surrogate for inclusion in a
CAN. In addition, as the targeted percentage of the dis-
tribution of a surrogate increases, there is a concomitant
increase in the number of additional biodiversity features
that may not have been used as surrogates in the analysis
but are conferred protection through protection of the
surrogate (Pressey et al. 2003).

Figure 1. Flowchart of the selection
of conservation area targets on the
basis of the target-area function
(m, is the slope of f, the target-area
function). How targets should be
selected depends on the functional
form of the target–area
relationship.

Methods

We based our analysis on a target-area function (f), which
assigns amounts of land (in square kilometers) to CANs
at different target levels, and an area-cost function (g),
which assigns costs (in dollars) to amounts of land. The
function f is important because it can be directly com-
puted with any area-prioritization algorithm (see below).
Thus, if t is the target of representation, then f(t) is the
area of the CAN that is needed. Then g[f(t)] is the cost
of that area of land. We considered fixed land-acquisition
budgets first. Because higher representation targets in-
crease the likelihood of persistence of surrogates, we set
targets at the maximum level t∗ permitted by the budget
(b). To compute t∗, b = g[f (t∗)]. This equation allows b to
be calculated if t∗ is known. Nevertheless, we needed to
compute t∗ when b is known. We, therefore, solved the
inverse of this equation to get the maximum permitted
target level, t∗ = f −1 [g−1 (b)].

If b is not fixed and may be increased to achieve higher
representations of biodiversity surrogates, the function f
can be used to provide a justification for target selection.
By showing how the area of nominal CANs increases
with the target level, f indicates whether more ambitious
targets are worthwhile. Figure 1 shows, schematically,
how f can be used for target selection. In particular,
if f = m · t, where t is the target and m is a constant
(i.e., f is a linear function), then the slope m of the line
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shows how rapidly the area of nominal CANs increases
as the representation target levels are increased. When
m is small, greater representation of biodiversity sur-
rogates requires relatively small increases in area. This
provides a strong basis for selecting higher targets as-
suming small increases in b are possible. Nevertheless,
for m & 1, greater representation requires significant
increases in area. Appropriate targets should then be se-
lected with other context-specific methods. For instance,
if environmental surrogates are land-use types, Land-Use
Land-Cover (LULC) change models may be used to deter-
mine what targets are appropriate (Guhathakurta 2003).
If biota (rather than environmental parameters) are being
used as surrogates, demographic models (Burgman et al.
2001), species-area curves (Desmet & Cowling 2004), or
more general species-heterogeneity approaches (Pressey
et al. 2003) are unavoidable. Whether these approaches
can be used depends on the data available.

In many circumstances f will not be a linear function.
The shape of f can then be used to justify target selec-
tion. If f is concave, planners should use the largest target
permitted by b because concavity ensures that greater tar-
gets require smaller increases in area. If f is convex, one
may construct context-specific models if the required
data are available. If not, f may be modeled as a sequence
of relatively horizontal line segments (e.g., see Fig. 5,
which is explained in detail in the Discussion). When f
is relatively horizontal, one can increase the target with-
out significantly increasing the area of the CAN (similarly
for relatively horizontal portions of a concave target-area
function). Our optimization model selected a target asso-
ciated with relatively horizontal segments of f when the
function was convex (see Supplementary Material). The
small number of data sets, targets, surrogates, and spatial
resolutions analyzed in previous studies prevented sys-
tematic determination of f. We computed f for 12 data
sets at 7 spatial resolutions and 19 target levels.

Each of the 12 data sets consisted of a set of areas for
potential inclusion in a CAN. Surrogates are associated
with these areas so that each data set forms a matrix P =
(pij) (i = 1, . . ., n; j = 1, . . ., q), where pij = 1 if the jth
surrogate is found in the ith area; otherwise, pij = 0. The
regions we analyzed included the Korean Demilitarized
Zone, the Mexican Transvolcanic belt, Oaxaca (Mexico),
Québec, Queensland, and West Virginia.

Surrogates for the Korean Demilitarized Zone, Mexican
Transvolcanic belt(e), Oaxaca(e), Québec(e), Queens-
land(e), and West Virginia(e) data sets are distributions
of different types of environmental parameters, such as
aspect, elevation, mean temperature, minimum temper-
ature, maximum temperature, slope, and soil type (the e
index refers to data sets of environmental parameters).
Each environmental parameter was partitioned into mu-
tually exclusive classes such that no area contained more
than one class. The Mexican Transvolcanic belt(s), Oax-
aca(s), and West Virginia(s) data sets were based on

species distributions modeled from the environmental
parameter data (the s index refers to data sets of species).
The Mexican survey data, Québec(s), and Queens-
land(s) data sets were derived from biological surveys
and museum records of species’ distributions. Table 1
and references therein provide details about each data
set.

Area prioritization involves solving the following op-
timization problem: select areas such that the represen-
tation target for each biodiversity surrogate is satisfied
while minimizing the total size (in square kilometers)
of the selected areas. The target area function can be
calculated from the results of area prioritization at dif-
ferent target levels. Specifically, the total size of the se-
lected areas is the y-coordinate in plots of the target-area
function f. The x-coordinate in these plots is the represen-
tation target. We used the ResNet software package for
area prioritization (Garson et al. 2002; Sarkar et al. 2002),
which implements a heuristic rarity–complementarity al-
gorithm. First, the surrogates were sorted in order of rar-
ity. Next, the area with the rarest surrogate was selected
for inclusion in the CAN. Ties were broken by comple-
mentarity, that is, by selecting the area with the largest
number of surrogates with unsatisfied targets (Sarkar &
Margules 2002).

The algorithm was iterated until the targets for all sur-
rogates were satisfied. Because areas selected later in
heuristic prioritizations may make previously selected ar-
eas redundant, we checked for and removed redundant
areas in our final prioritizations (i.e., an area was removed
if its removal did not bring a surrogate that had met its
target below its target) (see Sarkar et al. 2002 for details).
The analysis required 159,600 separate ResNet runs. Be-
cause such a large number of area prioritizations can-
not be performed with an optimal solver in a reasonable
amount of time, we used the fast rarity–complementarity
heuristic algorithm of ResNet. Nevertheless, to ensure
that results were not artifacts of our algorithms, we used
an optimal solver (CPLEX) to solve the hardest problems
(species surrogates at finest resolutions for the larger data
sets—Mexico, Queensland, Québec, Transvolcanic belt).
Optimal solutions were uniformly only marginally better
(<1%) than the heuristic solutions (data not shown; but
see Fuller et al. 2006).

We used uniform targets of 5–95% at 5% increments
for all surrogates. Because the algorithm selected areas
by lexical order if no area was uniquely best by rarity
or complementarity, we analyzed 100 randomizations of
the area order in each data set. Each data point in Figs.
2 through 4 therefore represents the mean of 100 sets of
selected areas.

To assess how spatial resolution affected the target-area
relationship, each data set was prioritized at 7 spatial res-
olutions: 0.01◦ longitude × 0.01◦ latitude, 0.02◦ × 0.02◦,
0.04◦ × 0.04◦, 0.05◦ × 0.05◦, 0.06◦ × 0.06◦, 0.08◦ ×
0.08◦, and 0.10◦ × 0.10◦. For areas at coarser resolutions,
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Figure 2. Effects of the percentage of target area on total area of conservation-area networks in (a) Oaxaca(s); (b)
Queensland(s); (c) Oaxaca(e); and (d) Queensland(e) (s, data sets of species; e, data sets of environmental
parameters). For (a-d) the y-axis represents the area of the conservation-area network selected. Each line
represents the mean of the set of areas selected for 100 randomizations at a specific spatial resolution. Standard
errors were too small to be depicted. The lines for (a), (c), and (d) are the best-fit linear regressions, f = m · t + b,
where f is area, t is target, and m and b are constants. In (b) lines are the best-fit polynomial regressions, f = a · t2

+ bt + c, where f is area, t is target, and a, b, and c are constants (r2 values not shown).

surrogates were assumed present if they were found in
the finer-resolution areas comprising them.

Results

The total size of selected areas for data sets representing
environmental parameters or modeled species distribu-
tions exhibited a linear dependence on target level for all
spatial resolutions analyzed. Results for Oaxaca(s), Oax-
aca(e), and Queensland(e) (Figs. 2a,c,d) were indistin-
guishable in this sense from those for the Korean De-
militarized Zone, the Mexican Transvolcanic belt(e,s),
Québec(e), and West Virginia(e,s). Linear regression
yielded f = m · t + b, m ∈ [45.13, 998.51] (r2 ≥ 0.999,

p < 0.0001) for all of these data sets at all 7 spatial reso-
lutions, and m increased with resolution for all data sets.
Approximately an order of magnitude difference was ev-
ident between the area required for 5% and 50% targets
for all spatial resolutions and data sets.

Mexico, Queensland(s), and Québec(s) contained sur-
rogate information from surveys and records and exhib-
ited a nonlinear convex target-area relationship. Queens-
land(s) exhibited the most convex relationship, which
became less pronounced at coarser resolutions (Fig. 2b).
This increase in economy may reflect the fact that more
species co-occur in a single area at coarser resolutions.
Polynomial (quadratic) regression yielded highly signifi-
cant results (r2 ≥ 0.985, p < 0.0001) for all 7 resolutions.
The relatively horizontal lines for 5% through 50% targets
indicated that up to approximately a 50% target for these
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Figure 3. Effects of target on total area of
conservation-area networks for all 12 data sets at the
0.01◦ spatial resolution. The y-axis represents the
mean area of sets of areas selected expressed as a
percentage of the region analyzed. Each curve
represents the mean of the sets of areas selected for
100 randomizations at a specific spatial resolution.
Standard errors are too small to be depicted. For
Mexico(s) and Queensland(s), the quadratic model
f = a · t2 + bt + c provided the best fit (e, data sets of
environmental parameters; s, data sets of species). For
all other data sets, we obtained the best fit from the
linear model.

plant species is achievable with fairly small increases in
CAN area. Mexico showed a similar, although less con-
vex, relationship for all resolutions (r2 ≥ 0.999, p <

0.0001). At finer resolutions, Québec(s) exhibited a lin-
ear relationship, but it became slightly convex at coarser
resolutions (r2 ≥ 0.998, p < 0.0001). At each resolution,
the percent variance in the mean solution area explained
by the target level was greater for the polynomial than
for the linear model.

Our regression analyses suggest that the differences
in the target-area functions for the data sets depended
on the type of surrogate data. In particular, the target-
area function for Queensland(s) was nonlinear (piece-
wise convex), whereas Queensland(e) exhibited a lin-
ear target-area function (Figs. 2b,d & Fig. 3). This re-
sult is likely due to the fact that, typically, more species
than environmental parameters co-occur in a single area
at any resolution, and the extent of this co-occurrence
increases at coarser resolutions. There were also many
more species surrogates than environmental parameter
surrogates. This added to the increased likelihood of over-
lap between Queensland(s) and Queensland(e).

The areas selected for Queensland(s) had higher spa-
tial economy (lower total size) than those selected for
Queensland(e) for all conservation targets >5%. This lack
of economy of the areas selected to represent the en-

vironmental surrogates was most pronounced for mid-
range targets. In particular, for the 50% target, the size of
the areas selected for the environmental surrogates was
more than twice the size of the areas selected for the
plant species.

The lack of economy in area prioritization for the
Queensland(e) was likely due to the large number of ties
after the calculation of complementarity that arise for
targets around 50%. In general, the number of ties with
the use of rarity and complementarity may influence the
linearity of the target-area function. The number of such
ties depended on the number of surrogates, with fewer
ties likely if there were more surrogates. Queensland(s)
contained 43 times as many surrogates as Queensland(e).
When the number of ties was large, more iterations of
the rarity–complementarity algorithm were required to
satisfy the targets for all the biodiversity surrogates. This
led to a selection of more areas. For the Queensland data
sets, when the conservation target was 50%, there were
2.2 × 105 ties after the calculation of complementarity in
the Queensland(e) but only 1.7 × 103 such ties in Queens-
land(s). For the 50% target, 1450 iterations of the rarity–
complementarity algorithm were required to satisfy the
targets for half of the environmental parameters but less
than one-third as many iterations were needed to meet
the targets for half of the plant species. The properties
that make CAN design problems computationally difficult
are not well characterized (Sarkar et al. 2004). Neverthe-
less, when rarity–complementarity algorithms are used,
the number of ties after the calculation of complemen-
tarity may be a better measure of problem difficulty than
the number of biodiversity surrogates.

The CAN area increased with coarser spatial resolution
for all data sets, but in different ways. The relationship
between CAN area and spatial resolution for each target
level for Québec(s) was concave (Fig. 4). Each curve in
Fig. 4 represents a vertical cross section of Fig. 2b for
each corresponding target level. The Korean Demilita-
rized Zone, Mexican Transvolcanic belt(e,s), Québec(e),
and Queensland(e,s) exhibited a similar concave relation-
ship. The Mexican Transvolcanic belt, Oaxaca(e,s), and
West Virginia(e,s) showed a linear relationship. Mexico
exhibited a slightly convex relationship.

Discussion

Our results demonstrate a linear relationship between
CAN area and target level for a wide variety of surrogates
and regions for all spatial resolutions analyzed. We ex-
pected mutually exclusive surrogates such as land types
or vegetation classes to lead to linear relationships be-
cause, typically, land types and vegetation classes do
not overlap spatially within areas. Our results for data
sets of environmental parameters also exhibited a linear
target-area function. Results of previous studies seem to
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Figure 4. Effects of spatial resolution on total area of
conservation-area networks for Québec(s) (s, data sets
of species). The x-axis represents spatial resolution,
and the y-axis represents the area of the
conservation-area network selected. Each curve
represents the mean of the sets of areas selected for
100 randomizations at a specific spatial resolution.
Standard errors are too small to be depicted. Solid
lines are the best-fit polynomial regressions, f = a ·
t2 + bt + c, where f is area, t is target, and a, b, and c
are constants. For this data set, the r2 associated with
the polynomial model was greater than the r2

associated with the linear model (Fig. 3)

support this finding. On the basis of area prioritization
for 248 land types, Pressey and Logan (1998) found that
CAN area increased linearly across 1, 5, and 10% tar-
gets at 3 spatial resolutions (specifically, areas of mean
size 62, 172, and 1316 km2), although this inference
should be treated with caution because there were only
3 data points. Nonmutually exclusive surrogates, such as
modeled species distributions, however, also exhibited
a linear target-area relationship. Warman et al. (2004)
also found that the CAN area required for 29 vertebrate
species increased with higher targets. Because the 3 tar-
gets of Warman et al. were not systematically related
to one another and only one spatial resolution (10-km2

hexagons) was analyzed, the functional form of the rela-
tionship and its sensitivity to spatial resolution could not
be determined.

The slope of the linear target-area relationship we
found also suggests that higher surrogate representation
will usually require significantly more area. The best fit
for most data sets was a linear function with slope much
>1. If scientifically defensible conservation targets ex-
ceed those adopted by policy organizations by a factor
of 3, as a recent review suggests (Svancara et al. 2005),
our results suggest 3 times more area is required for the
higher targets. This supports the conclusion drawn by
Svancara et al. (2005) that the mean CAN area required

for the scientifically defensible targets is 3 times that re-
quired for the targets adopted by policy organizations.

The protocol in Fig. 1 and the optimization model in
Supplementary Material demonstrate how this type of
analysis can provide grounds for target selection. The
first step in the protocol (Fig. 1) is to construct a target-
area curve. If the curve is linear, the next step is to ask
whether the slope is low or high. If the slope is high,
there is no alternative other than to construct context-
specific models to establish appropriate targets. If the
slope is low, the rational course of action is simply to
select the largest target level permitted by the budget be-
cause it is worthwhile to invest in more area because this
significantly increases biodiversity representation. Nev-
ertheless, the curve may not be linear. In that case it will
either be concave or convex. If it is the former, then
once again it is worthwhile to invest in more area as be-
fore, and the largest target level allowed by the budget
should be selected. If the curve is convex, the situation is
more complicated and there are two choices: construct a
context-specific model (if data are available) or solve the
following optimization model.

When the target-area function is relatively horizontal,
the target can be increased without increasing the area
of the CAN significantly. The purpose of the optimiza-
tion model is to select a target level that corresponds
to a horizontal segment of this function. When there is
more than one horizontal segment, the model selects the
highest target associated with a horizontal segment. This
is important for the practice of conservation planning
because higher targets provide greater representation of
the biodiversity surrogates. The model finds a relatively
horizontal segment of the target-area function by com-
paring each segment to a flat line. In addition, the slope
of the target-area function at the target selected by the
model has to be between the average slope for lower
targets and the average slope for higher targets. These
constraints prevent the model from picking a very low
target. Automating analysis of the target-area function via
an optimization model is important because the number
of functions that must be analyzed in practical planning
contexts may be extremely large (our analysis required
156,000 area prioritizations).

This protocol is particularly relevant in cases such as
that of the Queensland(s) data set, which was analyzed
with the optimization model in some detail (Fig. 5). For
these plant species, the required CAN area increased
much less up to an approximately 50% target than af-
ter the 50% target was met. Targets used for practical
CAN selection for these species should be set to at least
50% (assuming the land-acquisition budget permits this
choice) because the higher representation better ensures
persistence but costs comparatively less in terms of area.
The optimization model described earlier generalizes this
principle. If there is an approximately horizontal interval
of the target-area function, targets should be set at their
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Figure 5. The selection of optimal targets with a
convex target-area function. In (a) the solid line
is the target-area function f for the Queensland plant
species data at the 0.01◦ resolution (CAN,
conservation-area network). The dashed vertical line
shows the target selected by the optimization model
(60%). The y-coordinate of the kth black box is the
required area of a conservation-area network when
target k is used for all of the biodiversity surrogates.
The first number above the kth box is ūk, the average
slope of f for targets >k. The second number above
the k box is bk, the slope of f immediately to the
left of k. The number below the kth box is l̄k, the mean
slope of f for targets <k. Boundary conditions are
l̄1 = 0 and ūK = ∞. See Supplementary Materials for
details. Panel (b) shows the effect of spatial resolution
on the target-area function for the Queensland plant
data set: 0.02◦-0.1◦. The x-axis is the conservation
target, and the y-axis is the required size of the
CAN. The vertical lines indicate the conservation
target selected by the optimization model at each
spatial resolution.

highest (right) value in this interval. We derived this ratio-
nale for setting targets solely from information on surro-
gate distributions. We did not base it on ecological studies
of the plant species.

Our method thus complements recent efforts to tailor
targets to the specific conservation status and ecology
of individual species (Burgman et al. 2001; Pressey et al.
2003), such as the use of data on population size and
trend (increasing, decreasing, or constant) to set targets
for wildfowl in Mexico (Pérez-Arteaga et al. 2005). Tear
et al. (2005) recently systematized these efforts in a con-
ceptual framework for setting targets. Nevertheless, their
methods can be used only when data on, for example, de-
mography are available for all surrogates. Unfortunately,
such data are typically unavailable when conservation
planning concerns hundreds or thousands of species. Fur-
ther analyses of the type presented here are needed to
determine to what extent the difference between results
obtained from data sets of survey record surrogate infor-
mation and results from modeled species distributions
can be generalized.

We did not consider the role of the area-cost function
(g)—which assigns costs (in dollars) to amounts of land
(Frazee et al. 2003)—may have on target selection. In
most practical conservation planning, area is the only
available measure of cost. Further studies of area–cost
relationships are needed, however, and may provide a
justification for target selection similar to the rationale we
present (see Ando et al. 1998; Polasky et al. 2001; Naidoo
et al. 2006). Similarly, several other factors that we did
not consider may influence the choice of target level,
for instance, availability of areas for conservation action,
possible spatial configurations, and various sociopolitical
factors (Sarkar et al. 2006; Margules & Sarkar 2007). Our
analysis should be regarded as a first step in developing
guidelines for selection of representation targets in the
absence of adequate data to construct context-specific
models.

Our results also illustrate the importance of choice of
spatial resolution in conservation planning. Like Pressey
and Logan (1998), we found that CAN area increased at
coarser spatial resolutions. Thus, the decisions obtained
with the protocol in Fig. 1 will depend on the spatial
resolution of a planning exercise. Nevertheless, for dif-
ferent data sets, the area increased with spatial resolu-
tion in different ways: concavely, linearly, and (slightly)
convexly. If the relationship was concave, at coarser
resolutions the extent of the increase in CAN area de-
creased. Similar to the rationale for target selection, a
concave resolution–area relationship may provide a ratio-
nale for selecting a spatial resolution at which conserva-
tion planning should be conducted. Specifically, because
conservation-area networks at coarser resolutions con-
tain larger areas, and larger areas may better ensure the
persistence of species surrogates, a sufficiently concave
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resolution–area relationship may justify increasing the
land-acquisition budget b to conduct conservation plan-
ning at coarser spatial resolutions.
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