
Abstract Richard Levins has advocated the scientific merits of qualitative model-
ing throughout his career. He believed an excessive and uncritical focus on emu-
lating the models used by physicists and maximizing quantitative precision was
hindering biological theorizing in particular. Greater emphasis on qualitative
properties of modeled systems would help counteract this tendency, and Levins
subsequently developed one method of qualitative modeling, loop analysis, to study
a wide variety of biological phenomena. Qualitative modeling has been criticized for
being conceptually and methodologically problematic. As a clear example of a
qualitative modeling method, loop analysis shows this criticism is indefensible. The
method has, however, some serious limitations. This paper describes loop analysis,
its limitations, and attempts to clarify the differences between quantitative and
qualitative modeling, in content and objective. Loop analysis is but one of numerous
types of qualitative analysis, so its limitations do not detract from the currently
underappreciated and underdeveloped role qualitative modeling could have within
science.
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1. Introduction

Throughout his career, Richard Levins has championed the scientific merits of
qualitative modeling against ‘‘a prejudice, perhaps derived, legitimately or illegiti-
mately, from other disciplines, that in order to know something we must define it
precisely and measure it precisely’’ (Levins 1970, 77). Armed with this prejudice and
a view of physics as the paradigmatically precise science, Levins believed many
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biologists were uncritically imitating the highly idealized quantitative models used
by physicists in an attempt to achieve similar precision (Levins 1968a). Unconvinced
of this approach, other biologists were developing complex quantitative models in-
tended to mimic the complex structure and dynamics of real biological systems. The
problem with this strategy was that the large quantities of data needed to parame-
terize and properly test these models usually could not be collected feasibly (Levins
1966). This was one difficulty Levins saw with the ‘‘systems’’ approach to modeling
ecosystems adopted by the International Biological Program in the 1960s (Levins
1968b). Another was that he believed these complicated models would not increase
understanding of the complex systems they were intended to represent. A qualitative
modeling strategy that stresses enhancing understanding, Levins (1966) emphasized,
would help avoid these problems and counteract the excessive focus on emulating
models used in physics, which he believed typified and hampered much of the bio-
logical theorizing at the time.

Levins developed one method of qualitative modeling, called ‘‘loop analysis,’’ as a
complementary alternative to quantitative modeling (Levins 1974). Although as-
pects of this method were independently discovered several times (Wright 1921;
Mason 1953; Harary et al. 1965; Maybee 1966; Roberts 1971), Levins developed and
systematically applied it within a wide variety of different biological contexts (Levins
1975a, b, 1998; Lane and Levins 1977; Puccia and Levins 1985, 1991; Levins and
Schultz 1996), and it has subsequently been used in several studies within and out-
side ecology (Roberts and Brown 1975; Levine 1976; Briand and McCauley 1978;
Desharnais and Costantino 1980; Flake 1980; Vandermeer 1980; Boucher et al. 1982;
Lane 1986; Dambacher et al. 2003a, b). Economists have extensively used the same
qualitative method, although not under the label ‘loop analysis,’ to evaluate prop-
erties of economic systems (e.g. Lancaster 1962; Bassett et al. 1968; Hale et al. 1999).

Qualitative modeling has been criticized for being conceptually and methodo-
logically problematic (Orzack and Sober 1993). As a typical example of a qualitative
modeling method, loop analysis shows this criticism is indefensible (Justus 2005).
The method has, however, some serious limitations. One is that it usually cannot
determine whether a system exhibits a particular property, such as local stability.
This is an unavoidable shortcoming of the method being qualitative and true to some
degree of any modeling method that does not utilize quantitative information about
the system being modeled. Loop analysis partially remedies this shortcoming by
pinpointing the additional information needed to make the determination for some
properties, but the amount of additional information typically required increases
dramatically with model complexity. Another limitation specific to loop analysis is
that the conditions under which it is applicable are severely restrictive. It is therefore
not a method of qualitative analysis with wide scope or evaluative power, as Levins
and others sometimes seem to suggest (e.g. Levins 1975b; Lane 1998).

Loop analysis is but one of numerous types of qualitative analysis, so its limita-
tions do not detract from the (currently underappreciated and underdeveloped) role
qualitative modeling could have within science. The goal of this paper is to describe
loop analysis, its limitations, and to clarify the differences in content and objective
between quantitative and qualitative modeling. To situate loop analysis with respect
to the space of possible qualitative modeling methods, Section 2 outlines different
types of qualitative properties of models that represent features of systems with
different degrees of specificity. Section 3 describes loop analysis and two kinds of
model properties Levins and others have used it to evaluate. Sections 4 and 5 discuss
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some scientific merits of qualitative modeling and specific limitations of loop
analysis. Section 6 concludes by comparing the function of qualitative and
quantitative modeling within science.

2. Qualitative properties of scientific models

Models come in several different forms: verbal, diagrammatic, mechanical, mathe-
matical, etc. The most common in science are mathematical models in which:

(i) parts of the modeled system are designated by variables;
(ii) factors that influence system dynamics but are (usually) uninfluenced by it are

designated by parameters; and,
(iii) system dynamics—relationships among system parts and between these parts

and extrasystematic factors—are described by model equations.

These relationships can be specified with differing degrees of specificity in models,
from the strictly qualitative to the fully quantitative.

For expositional convenience, consider a system represented by variables x1,...,xn

and n equations, one for each variable. Assume that equation i expresses xi as a
function of x1,...,xn (possibly including xi) and a set of parameters c1,...,cm:

xiðtÞ ¼ Fiðx1; . . . ; xn; c1; . . . ; cmÞ: ð1Þ

From these equations, an n · n matrix A = [aij] can be constructed that represents
interactions between system parts (designated by variables x1,...,xn), i.e., aij repre-
sents the influence of xj on xi.

1 If the influence of xj on xi does not change for
different values of xj, aij is a constant real value. If it does, aij is a more complicated
function of xj. Different degrees of precision about the aij represent different degrees
of specificity about the system’s dynamics.2

For most models, especially those representing complex systems, it is usually
impossible or infeasible to determine the quantitative value or precise functional
form of most, let alone all of the aij. It is often possible, however, to determine
qualitative properties of their functional form. At the qualitative extreme, only
that there is or is not some interaction between variables can be ascertained. For
this reason, matrices representing this limited information are sometimes called
Boolean. If A is Boolean, it is symmetric (aij = aji for all i 6¼ j) and its entries take
the values 0 or non-0 to represent whether there are or are not functional
dependencies among the variables x1,...,xn as determined by the equations Fi,
i = 1,...,n. Specifically, aij 6¼ 0 represents that xj is an argument of Fi, and aij 6¼ 0
represents that it is not. This is the kind of information portrayed in unweighted,
undirected graphs. Note that aij = aji = 0 represents the absence of a qualitatively

1 More generally, a (n + m) · (n + m) matrix that also represents the effects of the m parameters on
the variables could be constructed. Since variables do not affect parameters [(ii) above], the lower
left quadrant of this matrix would be composed of zero entries. If the parameters do not influence
one another, as is commonly assumed in scientific modeling, the lower right quadrant would also
have zero entries. Only for simplicity of presentation, I have focused on relations between variables.
2 If the Fi are partially differentiable, A may be represented by the familiar Jacobian matrix (see
Section 3).
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discernable interaction between xj and xi (i.e., a null effect), not that its precise
quantitative value is 0.

More than Boolean information is usually required to derive significant insights
about modeled systems. If the direction of the interactions—that changes in xj

change the value of xi and/or vice versa—are determinable, A is called directed. Its
entries take the same values as Boolean matrices, but A may not be symmetric.
Asymmetric causal relations in a system, for instance, can be represented with di-
rected matrices. If, becoming more precise, the signs as well as directions of inter-
actions are determinable, A is called sign-directed and its entries take the values +1,
–1, or 0 to represent enhancing, inhibiting, or null effects between variables. This is
the kind of information portrayed in sign directed graphs (digraphs), which are the
primary focus of loop analysis. Note that the fact that all positive (negative) entries
of a sign digraph are +1 (–1) does not mean all the interactions between variables are
of equal magnitude. This stipulation, made by Roberts and Brown (1975, 579), would
severely restrict the range of systems representable by sign digraphs.

Further specification of aij is sometimes possible without full determination of its
mathematical form. aij may be an increasing or decreasing monotonic function for
instance.3 If aij is monotonic, furthermore, the functional form of the increase or
decrease may be convex or concave depending on whether the magnitude of the
influence on xi decreases or increases as xj increases. Finally, the exact mathematical
form of the relationship between xi and xj may be ascertainable. Notice that these
different kinds of relations constitute a hierarchy of increasing specificity: directed aij

are Boolean, sign-directed aij are obviously directed, monotonic aij are sign-directed,
etc.4

This hierarchy concerns the form of the interactions between variables, and
should be distinguished from relations that might hold between different values they
take. If aij is positively monotonic, concave, and aji = 0 for instance, we know there is
some interaction between xi and xj (because aij is Boolean non-zero), that xj influ-
ences xi but not vice versa (because aij 6¼ aji =0), that increases in xj induce increases
in xi (because aij is positively signed), that the larger the xj-increase the larger the xi-
increase (because aij is positively monotonic), and that the magnitude of the effect
on xi decreases as xj increases (because aij is concave). Yet none of this indicates the
relative size of the values of xi and xj. Knowing aij is positively monotonic concave is
consistent with xi and xj having approximately identical or radically different values.

It is sometimes possible to determine how values of different variables are
qualitatively, but not quantitatively, related. The most imprecise of these relations
are categorical, whereby values (which need not be numerical) are sorted into a finite
number of mutually exclusive categories. If the categories exhaust the set of values
being considered, they partition the values into equivalence classes, one of the
simplest being the three-category partition of numerical values into positive, nega-
tive, and null (zero). Categorical classification is typically used to represent prop-
erties distinguished by qualitative features that cannot be put on a common

3 A function f is monotonic increasing if 8x1; x2ð Þ x1\x2ð Þ ! f ðx1Þ\f ðx2Þð Þð Þ . The inequality of the
consequent is reversed for a monotonic decreasing function.
4 The following counterexample shows that a positive sign-directed interaction from xk to xj is not
equivalent to a monotonic increasing interaction. Consider two increases in xk, from xk

0 to xk
1 and

from xk
0 to xk

2 such that xk
1 \ xk

2. Since the interaction from xk to xj is positive sign directed, these
increases in xk will induce increases in xj, to xj

1 and xj
2, respectively. It may not be the case that xj

1 \
xj

2, however, as required if the interaction were increasing monotonic.
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quantitative or ordinal scale. Classifying individuals of a biological population into
distinct phenotypes is an example of categorical classification.

Qualitative properties of different variables may support a ranking of their values.
Whether one species consumes another species in a biological community, for
example, is often ascertainable through observation or by study of their qualitative
physiological and behavioral properties. Population sizes of consumed species are
also usually greater than those of their consumers. Facts like this are designated by
ordinal relations between variable values and can be incorporated into model
equations to enhance representational precision. Ordering the values of the vari-
ables representing consumed and consumer species, for instance, could help model
the consumer-resource dynamics of biological communities containing them more
accurately.

Sometimes the degree one variable value is greater or less than another can be
determined more precisely even when full quantification of the difference is not
possible. While ordinal relations rank values, interval relations order the magnitudes
of differences between values in terms of ratios of these differences. Ordinal rela-
tions specifying that xi < xj and xk < xl for instance, do not entail the difference
between the former is greater or less than that of the latter. Interval relations pro-
vide that additional information by specifying that

xj�xi

xl�xk
is greater or less than unity.

These relations, moreover, are unique to increasing linear transformations of the
values. Further specificity can be attained with other relations, for instance, ratios of
variable values, or restrictions on the range of values a variable can take. Similar to
the hierarchy of different types of qualitative interactions between variables men-
tioned above, relations between variable values also comprise a specificity hierarchy:
ordinal relations are (even if trivially) categorical, and interval relations are ordinal.

There are thus two qualitative hierarchies of model specification. One concerns
different types of interactions between variables (Fig. 1A). The other concerns
relations between variable values (Fig. 1B).5 The full mathematical form of a model
provides the highest degree of precision about the forms of interactions between its
variables. For each interaction between two variables, the mathematical form shows
what position, if any, it has in the first hierarchy (Fig. 1A). A completely parame-
terized mathematical model—that is, one with quantitative values assigned to all
model parameters—also maximizes precision about the relations between variable
values. It shows what place, if any, these relations have in the second hierarchy
(Fig. 1B).

The focus thus far has been on interactions between and values of variables, but
the same two hierarchies also characterize the aij. Consider interactions between
them first. The magnitude and form of some aij may depend on others, and as the
latter vary the former may change. If aij represents the intensity of interaction
between two coevolving species, for instance, it may change over time and this may
inhibit, enhance, or change the form of interactions between other species.
Depending upon the specificity by which these interactions between aij can be
ascertained, they can be represented by Boolean, directed, signed-directed, mono-
tonic, or concave relations. Similar to relations between variable values, relations
between values of different aij may also be determinable. An ordinal relation like
aij > akl for constant aij and akl, for example, designates that the linear influence of xj

on xi is stronger than that of xl on xk. If a specific aij represents a strong symbiosis

5 Neither hierarchy is intended to be exhaustive.
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between two mutualist species, for example, its magnitude will be greater than the aij

representing weak interactions between species.
This discussion shows how systems can be modeled with varying degrees of

precision by a wide variety of different types of qualitative relations. Qualitative
modeling concerns what properties can be derived from these qualitative relations
absent the precise mathematical form of the system’s model. The character and
scope of different qualitative modeling methods depend upon the types of qualita-
tive relations they analyze, and on any conditions their application requires. There
are therefore many different possible qualitative methods, loop analysis being just
one. Section 3 shows how loop analysis uses qualitative properties of models to
evaluate the local stability of systems and how they respond to changes in parameter
values.

3. Loop analysis

Scientific models often represent the dynamics of systems by differential equations
rather than direct equations for their variables, as in (1). Specifically, if a system is
represented by n variables x1,...,xn, its dynamics can be represented by n differential
equations:

dxiðtÞ
dt
¼ fiðx1; . . . ; xk; . . . ; xn; c1; . . . ; cj; . . . ; cmÞ; ð2Þ

where cj are parameters, and 1£ i£ n. Loop analysis focuses on the relations among
variables at equilibrium these equations specify. At a point equilibrium

x� ¼\x�1; . . . ; x�n[; 8ið Þ dxiðtÞ
dt
¼ 0

h i
and relations among variables are given by the

Fig. 1 Hierarchical classification of different qualitative properties. (A) presents a hierarchy of
different kinds of qualitative interactions between entities; (B) presents a hierarchy of different kinds
of relations between their values
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n · n Jacobian matrix evaluated at x*, i.e., the matrix A of constant interaction

coefficients aij ¼ @fi

@xj

���
xj¼x�

j

: Thus, loop analysis evaluates system properties in the local

neighborhood of x*.

Loop analysis is based on an equivalence between matrices of constant coeffi-
cients like A and directed graphs (digraphs).6 The variables x1,...,xn correspond to
vertices of a digraph. The coefficients aij correspond to digraph edges that represent
the effects of xj on xi, specifically how increases in xj affect xi.

7 The matrix

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5; for instance, corresponds to the digraph of Fig. 2.

A path is a series of directed edges from vertex j to vertex i that crosses no
intermediate vertices more than once; a loop is a path from a vertex to itself. The
number of edges in a path (loop) determines its length and disjunct paths (loops)
share no vertices. a12a21 and a33 in the digraph of Fig. 2, for instance, are disjunct
loops of length 2 and 1.

The determinant of a square matrix can be expressed as a function of the loops of

its corresponding digraph. For example,
a11 a12

a21 a22

����
���� ¼ a11a22 � a12a21; which is the

difference between a product of two length-1 loops (a11 and a22) and one length-2
loop (a12a21). Levins (1975b, 20) generalized this relationship between determinants
and loops to n-order matrices:

Fig. 2 A directed graph for three variables

6 Wright (1921) probably first recognized this relationship between matrices and directed graphs,
and consequently between determinants and loops (see below), in his development of path analysis:
a method by which the effects of different factors inducing variation in a variable can sometimes be
distinguished. Levins (1974) recognized this relationship independently of Mason (1953), who
appreciated it in his analysis of the dynamics of electrical circuits, and Maybee’s (1966) similar
recognition of the relationship in economics (see Bassett et al. 1968).
7 The definition of the Jacobian matrix in terms of partial derivatives requires aij be defined in terms
of how increases in xj affect xi.
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Aj j ¼
Xn

m¼1

ð�1Þn�m
X

Lðm;nÞ2Lm;n

Lðm; nÞ; ð3Þ

where Lðm; nÞðm � nÞ is the product of n coefficients forming m disjunct loops, and
Lm,n is the set of all such products in the digraph of A. L(3,5), for instance, is the
product of the five coefficients of three disjunct loops.

With this generalization, Levins (1975b, 21) defined ‘‘feedback at level k’’ in n-
variable systems:

FkðAÞ ¼
Xk

m¼1

ð�1Þmþ1
X

Lðm;kÞ2Lm;k

Lðm; kÞ; ð4Þ

where 1£ k£ n. For instance, F1ðAÞ ¼
Pn
i¼1

aii; which is the sum of the diagonal ele-
ments of A, the length 1 loops. The underlying basis of this definition is the idea that
feedback is a process by which changes in variables induce changes in other variables
that then affect the variables originally changed (Puccia and Levins 1985). Positive
feedback enhances change: increase in variables induces further increase, and de-
crease induces further decrease. Negative feedback counteracts change: increase
induces decrease, and decrease induces increase. Notice that this definition is en-
tirely consistent with a simple pendulum being a negative feedback system, contrary
to Wimsatt’s (1970) more stringent adequacy conditions on a definition of feedback.

Levins developed two main applications of loop analysis: local stability analysis and
‘‘press’’ perturbation analysis. Characterized informally, a system at an equilibrium
point x*is locally asymptotic stable if systems beginning in a local neighborhood of x*

return to x* after ‘‘small’’ perturbations. Two mathematical results form the theoretical
basis of Levins’ use of loop analysis to evaluate local stability. The first is Lyapunov’s
([1892] 1992) proof that x* is locally asymptotic stable iff:

RekiðAÞ\0 for i ¼ 1; . . . ; n; ð5Þ

where Reki(A) designates the real part of k i, the ith eigenvalue of A. The second is
that (5) can be evaluated with the Routh-Hurwitz criterion (see Gantmacher 1960).
With these results, Levins (1974) ingeniously used (3) and (4) to formulate the
Routh-Hurwitz criterion in loop-theoretic terms. As reformulated, the criterion re-
quires: (i) negative feedback at every level; and, (ii) stronger feedback at lower
levels than higher ones.8

Local stability analysis is commonly taken to indicate how systems respond to
small perturbations of finite duration called ‘‘pulse’’ perturbations.9 The goal of
press perturbation analysis, on the other hand, is to evaluate how systems respond to
perturbations of indefinite duration, sometimes called ‘‘press’’ perturbations (Sch-
mitz 1997).10 Within the context of loop analysis, a press perturbation is represented
by a change in one parameter (or variable) from one constant value to another, and
system response is gauged by how the equilibrium values of variables subsequently

8 See Justus (2005) for details.
9 Justus (in press) presents some problems with this view in the context of mathematical ecology.
10 Press perturbation analysis is equivalent to a method of qualitative analysis developed in the field
of ‘comparative statics’ in economics (see Athey et al. 1998).
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change. Changes in equilibrium values of different fish population sizes that are
caused by a change in the constant supply rate of some nutrient to a lake, for
example, could be studied with this type of analysis.

Represented in terms of (2), the objective of press perturbation analysis is to
determine the change in the equilibrium value of each variable xh (1£ h£ n) fol-
lowing a change in a parameter ck, i.e., to determine @xh

@ck
: Assuming the system

reaches a new equilibrium, application of the chain rule to (2) from above yields (see
Puccia and Levins 1985, Appendix):

@fi

@xh

@xh

@ck
þ @fi

@ck
¼ 0: ð6Þ

In matrix notation, the quotients @fi

@xh
for i, h = 1,...,n are the aij of the Jacobian matrix

A from above. Since @fi

@ck
represents the change in the parameter, which is given, and

@xh

@ck
is unknown, the general form of the problem is to solve the matrix equation:

Ax ¼ b; ð7Þ

for x where x ¼ @xh

@ck

h i
and b ¼ � @fi

@ck

h i
: Solving for @xh

@ck
using Cramer’s rule shows that:

@xh

@ck
¼

a11 � � � � @f1

@ck
� � � a1n

..

. . .
. ..

. ..
.

ai1 � � � � @fl

@ck
� � � ain

..

. ..
. . .

. ..
.

an1 � � � � @fn

@ck
� � � ann

�������������

�������������
Aj j ; ð8Þ

where the numerator is the determinant of A with � @fl

@ck
ðl ¼ 1; . . . ; nÞ replacing the

ith column.
Like his loop-theoretic formulation of the Routh-Hurwitz criterion, Levins (1974)

showed how (8) can be expressed in terms of loops. Let pij
k be the product of the k–1

directed edges that form a path of k vertices from j to i, and let Fn-k
–p be the feedback

of the complementary subsystem of the remaining n–k vertices that are not part of
this path. These definitions, (3), and (4) entail:

@xh

@ck
¼

Pn
j¼1

@fj

@ck

� �
pk

hjF
�p
n�k

Fn
; ð9Þ

11 where ck is the parameter that changes to a new constant level. (8) and (9) are
equivalent, and therefore provide the same information about changes in variables
following press perturbations. These equations can also both assess changes in
variable values when there is an external input or output of a constant amount into
or from one variable. This is done by simply interpreting ck as the input or output
from the relevant variable. (8) and (9) can be used to predict, therefore, the effects a
constant migration of individuals of some species into or out of a biological

11 For a detailed discussion of this equation, see Puccia and Levins (1985, Ch. 3).
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community (designated by a change of a constant amount in one variable) may have
on the equilibrium values of other species (designated by other variables).

As presented thus far, there is nothing distinctively qualitative about loop anal-
ysis. It becomes qualitative when applied to models in which only qualitative
properties are represented, such as in sign digraphs that represent only sign-directed
interactions between variables. In sign digraphs, if aij > 0, xj ! xi designates a
positive effect of xj on xi; if aij < 0, xj xi designates a negative effect of xj on xi;
and if aij = 0, no edge exists, which designates a null effect between the variables. If

a11 a12 a13

a21 a22 a23

a31 a32 a33

2
4

3
5 ¼

�1 �1 �1
þ1 0 0
0 þ1 0

2
4

3
5; for example, the corresponding sign digraph

is Fig. 3. This pattern could represent interactions between three species for which
there is certainty about their sign and direction, but little is known about their
functional form.

Generally, only the sign and direction of interactions between variables are
determinable from a sign digraph. The locality restriction of loop analysis (see
above), however, provides additional information about the interactions because it
entails that the aij take constant real values. Loop analysis consequently only applies
to sign digraphs with constant aij; sign digraphs with non-constant coefficients cannot
be analyzed using loop analysis. Thus, the locality restriction significantly enhances
the analytic power of loop analysis because it effectively specifies the precise func-
tional form of interactions between variables. If aij is constant and positively (neg-
atively) signed, the influence of xj on xi is positively (negatively) monotonic. In fact,
the constancy and sign entail that the precise mathematical form of the interaction is
positively or negatively linear. Thus, the locality condition required by loop analysis
specifies the precise mathematical form of the aij of sign digraphs. With respect to
the two hierarchies presented in Fig. 1, therefore, loop analysis is only qualitative in
the weak sense that it presupposes the exact mathematical form of the interactions
between variables (linear) but nothing about the numerical magnitude of their slope
(the constant value of the aij).

Fig. 3 A typical sign directed graph for three variables
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With this information, it is sometimes possible to determine whether a sign
digraph with constant coefficients is or cannot possibly be locally asymptotic stable,
and how it will react to press perturbations. Local asymptotic stability can be
assessed somewhat laboriously with Levins’ loop-theoretic formulation of the
Routh-Hurwitz criterion in the same way as when quantitative values of the aij are
available. Without quantitative values, however, the criterion usually provides
ambiguous evaluations. The local stability of the sign digraph in Fig. 3, for instance,
depends upon whether |a11a12| > |a32a13|, which usually cannot be determined from
their signs.

Levins’ loop-theoretic Routh-Hurwitz criterion also does not clearly indicate
what qualitative sign patterns of sign digraphs, if any, entail local asymptotic sta-
bility, regardless of the quantitative values of the aij. Quirk and Ruppert (1965) were
the first to find such patterns. They proved a sign digraph with constant coefficients
such that ( 8iÞðaii\0) is locally asymptotic stable if:

ð8i; jÞ½ði 6¼ jÞ ) ðaijaji60Þ�; and; ð10Þ
there are no loops of length � 3: ð11Þ

Part of the import of this criterion is the apparent generality of the stability it
establishes. If a sign digraph satisfies these conditions, it is called sign-stable and is
locally asymptotic stable for any additional specification of the values of its edges,
such as quantification, that preserve their sign pattern. Other criteria found thus far
weaken the requirement that (8iÞðaii\0),12 but the intricacy of the additional con-
ditions they require yield negligible insight into what properties of sign patterns
guarantee local asymptotic stability.

Formulated in terms of (7), loop-theoretic press perturbation analysis assesses
whether the signs of the entries of x can be determined when A and b are only
specified as sign-directed. If they can, the system represented by (7) is called sign-
solvable. The apparent generality of this property—systems remain sign-solvable for
any specification of the entries of A and b preserving their sign pattern—prompted
efforts to find qualitative criteria for it, similar to Quirk and Ruppert’s qualitative
criterion for stability. Lancaster (1962) first found a sufficient condition for sign-
solvability, and Bassett et al. (1968) first found necessary and sufficient conditions.
Unfortunately, these conditions and others found thus far are rather complicated
and consequently do not produce the same degree of insight into what sign pattern
properties are required for sign-solvability as Quirk and Ruppert’s result did for
sign-stability.13

How variables of sign digraphs respond to press perturbations can be somewhat
laboriously assessed with (9) in the same way as when quantitative values of the aij

are available. Similar to loop-theoretic local stability analysis, however, the results of
such calculations are also usually ambiguous. Further information about the values
of the aij is usually required to determine how variables will change. (9) also suffers
from the same opacity as the loop-theoretic Routh-Hurwitz criterion: it does not
clearly indicate what sign patterns, if any, entail how variables respond to press
perturbations, regardless of any further specification of the aij.

12 See Logofet (1993) for a review.
13 See Hale et al. (1999, Ch. 2) for a review.
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4. Merits of qualitative modeling

One frequently cited advantage of qualitative over quantitative analysis is that the
data required to estimate parameter values and quantitatively test model predictions
is often unavailable and cannot be acquired feasibly, especially within the budgetary
constraints of most scientific projects (Levins 1966). Within ecology, this limitation is
well-known to ecologists attempting to estimate typical population and community
model parameters like intrinsic growth rate, carrying capacity, competition coeffi-
cients, etc. Qualitative properties of models, however, are more easily ascertained.
Economists, for instance, regularly focus on sign-directed relations because they are
confident of the sign and direction of interactions between most major parts of the
economy but doubt their functional form can be determined more precisely (Hale
et al. 1999). Natural history plays a similar role in ecology (Lane 1998; Dambacher
et al. 2003b). Familiarity with the natural histories of species is often sufficient to
determine the qualitative character of their interactions and qualitative relations
between their population sizes.

For some subjects, moreover, quantitative modeling is inappropriate not because
the requisite data cannot be collected feasibly, but because the data and phenomena
being studied are essentially qualitative. This is often the case in the social and
decision sciences. It is usually a mistake, for instance, to insist that a precise math-
ematical function accurately represents the imprecise belief states or preferences of
typical real-world agents. This is not merely because psychology has yet to provide a
complete account of these mental states, or because performing the numerous
experiments and studies that would be required to determine the precise function of
an agent (assuming it exists) would be practically infeasible. Principally, it is because
there is little reason to expect human behavior is accurately represented by such a
function.14

Incommensurability, to take one example, precludes comparisons of different
evaluative criteria altogether. Decisions that fare differently on incommensurable
criteria consequently cannot be ranked, ordered by interval relations, or other-
wise compared with a precise utility function or by any other means. Different
qualitative methods and a large literature have been developed to deal with this
constraint systematically, and other qualitative methods have been developed
to deal with other irreducibly qualitative features of agent behavior (see Figuera
et al. 2005).15 The expectation that the often unprincipled, opportunistic,
and sometimes even inconsistent belief states and preferences of humans are
best modeled by precise mathematical functions seems to reflect the quantita-
tive prejudice that originally motivated Levins to develop loop analysis (see
Section 1).

Accommodating these features of scientific research—(i) the inappropriateness of
quantitative analysis for some phenomena, and (ii) the infeasibility of acquiring
sufficient quantitative data—is one advantage of qualitative over quantitative
modeling. Another advantage is the generality of any result it establishes. Precisely
because qualitative modeling requires less commitment to details—e.g., the exact

14 Walley (1991, Ch. 5), for instance, argues that imprecise probabilities best represent uncertainty,
lack of information, ambiguity, and other aspects of real-world agents’ belief states.
15 Another, more controversial, example is whether interpersonal utility comparisons are possible,
and if so, with what degree of precision they can be done (see Weirich 1984; Harsanyi 1976).
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mathematical form of relationships between variables—its results generalize more
broadly. The scope of generalization depends upon the qualitative properties and
assumptions needed to establish the result. If only qualitative properties that provide
low levels of specificity about the system’s structure are needed, such as Boolean or
directed relations, knowing relatively little about the system is sufficient to derive
the result. The result therefore holds for any system exhibiting this minimal struc-
ture, regardless of how the system’s structure is specified with more detail. Satis-
faction of Quirk and Ruppert’s criterion, for instance, entails a system is sign-stable
and further specification of the ordinal, interval, or quantitative values of the aij

consistent with the criterion does not jeopardize this fact. This advantageous feature
of qualitative modeling is a consequence of a tradeoff between precision and gen-
erality in scientific modeling (Weisberg 2004).

Another advantage of qualitative modeling is that the understanding of phe-
nomena it provides is less susceptible to the drawbacks of common idealization
techniques used in quantitative modeling. Qualitative models are idealized repre-
sentations of phenomena if the phenomena being modeled are best described
quantitatively. The dynamics of a mechanical system like a combustion engine, for
instance, are most accurately modeled with quantitative variables, parameters, and
parameterized mathematical equations.16 Unlike idealizations often made in quan-
titative modeling, however, qualitative idealizations are not misrepresentations.
Qualitative models avoid problem (ii) from above by veridically representing system
properties at low degrees of specificity. Lack of specificity, however, does not
jeopardize the verity of what a qualitative model says holds of a system. Call this
type of idealization specificity-idealization.

The predominant idealization strategy of quantitative modeling, veracity-ideali-
zation, is different. To circumvent problem (ii), features of a quantitative model are
often simplified to make it describable by precise and tractable mathematical
equations with fewer or more easily estimable parameters. Rather than simplify by
decreasing specificity, these simplifications usually involve making unrealistic
assumptions about the modeled system, such as representing discrete system com-
ponents or processes as continuous, treating some interactions and propagation of
their effects as instantaneous, ignoring some system parts and interactions, etc.17 The
differential equations used to model biological communities, for example, often
incorporate several of these simplifications. The hope is that these intentional mis-
representations will not distort the salient features of the system. If they do not, the
system can be represented by simplified but tractable mathematical equations,
thereby achieving representational precision.

The drawback of veracity-idealization, however, is that it may mischaracterize
important features of the modeled system. For the same reason a model is idealized
in the first place, moreover, the data collection needed to test model predictions and
thereby ensure that important system features are not mischaracterized may

16 This is not the case for the essentially qualitative phenomena discussed above, such as agent
beliefs and preferences.
17 Typically, scientists in one field appropriate models developed in another to make these simpli-
fications. This practice involves a judgment that, despite their apparent differences, the systems being
analyzed share a similar structure. It is also frequently motivated by the desire to import scientific
rigor from a science with a secure theoretical foundation to a science without one. Most of the highly
idealized models developed by Lotka, Volterra, and their contemporaries in the early development
of mathematical ecology, for instance, originated in physics (Scudo 1971; Gasca 1996).
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be practically impossible. Consequently, the apparent understanding a veracity-
idealized model provides about a system may be misleading and, ultimately, of
negligible value.18 Qualitative modeling avoids this problem, at the obvious expense
of the ability to generate precise predictions, by focusing on qualitative properties of
systems that are ascertainable with relative certainty. This ties the understanding
qualitative modeling provides to more realistic, though imprecise representations of
systems.

There are thus clear advantages of qualitative over quantitative modeling. In
addition, it should be clear from Section 3 and Justus (2005) argues in detail that
there is nothing conceptually or methodologically problematic, or mathematically
unrigorous about qualitative analysis, loop analysis being the case study (cf. Orzack
and Sober 1993). Some putatively qualitative methods of analysis are conceptually
and methodologically problematic, such as visual assessment of randomness or the
‘‘fit’’ between a curve and plotted data.19 The hope is that loop analysis, which is not
flawed in this way, will be a powerful qualitative modeling technique, capable of
establishing significant results about a wide variety of systems modeled in science.
Some of Levins’ informal descriptions of loop analysis give this impression, for
example:

This chapter will present a new method of analysis for the study of partially
specified systems. The method, called ‘‘loop analysis,’’ proves particularly
useful for examining the properties of biological communities in which the
interactions between species can be specified in a qualitative but not a quan-
titative way. I will show that much can be deduced about the structure and
behavior of such systems merely by using the sign of an interspecific interaction
(Levins 1975b, 16);

and, ‘‘This procedure [loop analysis] may be the only one available in partially
specified systems’’ (Levins 1974, 137). Subsequent expositions of loop analysis by
others have sometimes reinforced this impression, for instance:

Central to understanding cumulative effects and the complex causality is our
ability to diagram the important causal relationships and understand how they
interrelate to cause system change. Qualitative network analyses, such as loop
analysis, show the most promise in achieving this end...Loop analysis can also
predict qualitative changes in all the network variables for a set of network
stresses. (Lane 1998, 137–138)

Although Levins’ technical expositions of loop analysis are always explicit about its
applicability conditions, the limitations these conditions impose on the method re-
ceive little attention. The next section makes clear, however, how serious these
limitations are.

18 If adequate data are available to test them, predictions of veracity-idealized models can serve as a
means towards developing improved models with fewer unrealistic features (Wimsatt 1987).
19 See Orzack (1990) for a clear discussion of examples of these problematic methods in biology.
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5. Limitations of loop analysis

Loop analysis is the qualitative counterpart of Lyapunov’s (1992) indirect method.20

As such, it only applies to a system in the local neighborhood of a point equilibrium.
This restricted scope, Section 3 pointed out, allows the specific functional form of
relationships between variables (positive or negative linear, or null) to be deter-
mined from the signs of coefficients in the Jacobian matrix. Without this informa-
tion, local asymptotic stability and system response to press perturbation cannot be
assessed loop-theoretically.

The restriction to local neighborhoods of point equilibria is therefore essential to
loop analysis, but it also narrowly constrains the method’s scope. One limitation this
imposes is that loop analysis only applies to models with an equilibrium. Equilibrium
models, however, do not adequately represent several different kinds of systems. In
ecology, for instance, the predominant focus on equilibrium models in the 1960s and
1970s has been supplanted with the recognition that non-equilibrium models best
represent many types of ecosystems (Wiens 1984; Chesson and Case 1986). Although
these and other non-equilibrium systems cannot be evaluated with loop analysis,
their non-equilibrium dynamics clearly do not preclude qualitative modeling in
general from providing insights into their dynamics.

A more serious limitation is that loop analysis only provides information about
a system in the local neighborhood of a point equilibrium. Except in rare cases,
this says nothing about how a system responds to real-world pulse or press per-
turbations. The problem is that local neighborhoods are infinitesimal neighbor-
hoods; strictly speaking, they have no finite extension. Any real perturbation of a
system describable as being at a point equilibrium will therefore displace the
system out of the local neighborhood of its equilibrium, rendering loop analysis
inapplicable. It is unreasonable to suggest, for example, that a system like a bio-
logical community initially at equilibrium would remain in an infinitesimal neigh-
borhood of it following typical real-world perturbations, such as frosts, droughts,
increases in certain compounds (as caused by fertilizer runoff or a chemical spill
for instance), etc. Thus, even the common characterization of local stability
analysis as assessing how systems respond to ‘‘small’’ perturbations is misleading
(Hastings 1988).21 If a system is linear, local stability entails global stability, but
most systems studied in science are undeniably not linear. For these systems, loop
analysis of local stability therefore provides little or no insight into how they
respond to real-world perturbations.

These are drawbacks of any method of analysis focusing on local neighborhoods
of equilibria, qualitative or quantitative. Some of the specific conditions application
of loop analysis requires, however, also limit its scope, especially with respect to
press perturbation analysis. Besides assuming a system is initially at a point equi-
librium, loop-theoretic press perturbation analysis also requires the system evolve
toward an asymptotically stable equilibrium after the press perturbation begins
(Bassett et al. 1968). Without this asymptotic behavior, system variables may not
tend towards the new equilibrium values consistently, which would prevent their
direction of change from being reliably predicted (see Section 3). For a given system,

20 See Brauer and Nohel (1969) for a description of this method.
21 See Justus (in press) for a detailed discussion of this issue.
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therefore, only effects of those press perturbations, if any, that yield a new
asymptotically stable equilibrium can be evaluated with loop analysis.

This places some substantial restrictions on the method. For one, a system can
only establish a new asymptotically stable point equilibrium if the perturbation
causes the parameter to change from one constant value to another. Loop analysis is
limited, therefore, to evaluating the effects of a narrow range of perturbations.
System responses to parameter changes that vary in magnitude or sign, i.e., the
magnitude or sign of @fi

@ck
varies, usually cannot be evaluated loop-theoretically.22

Many, perhaps most, press perturbations affecting real-world systems induce com-
plex, non-constant changes in parameter values.

Besides this restriction, the asymptotic dynamics of the stable equilibrium must
also be sufficiently strong for the results of loop theoretic press perturbation analysis
to be informative. If they are not, the perturbed system may eventually establish a
new equilibrium (assuming, often unrealistically, that subsequent perturbations do
not preempt this), but on a time scale far exceeding those of scientific interest for the
system being studied. Results derived from loop analysis about how variables will
change would therefore be uninformative because the change would be too slow to
be empirically detectable or considered different from zero for practical purposes in
the time scales allocated for analysis. This obviously detracts from the import of the
results of loop analysis for such systems. It is also problematic because loop analysis
cannot assess the rate variables approach asymptotically stable equilibria, which is
determined by the magnitude of the smallest real part of the system’s eigenvalues
(see [4] above), called the dominant eigenvalue. By focusing strictly on sign-directed
relations, loop analysis can only show that the real parts of eigenvalues are positive
or negative; it cannot determine their magnitude. Thus, that system variables ap-
proach equilibrium sufficiently quickly, specifically that it is not so slow as to render
the results of press perturbation analysis unimportant, cannot be established loop-
theoretically.

The limitations considered thus far concern the scope of loop analysis. Within this
scope, there are also significant limits to what loop analysis can show. One is that the
sign pattern of a sign digraph alone is rarely sufficient to establish local asymptotic
stability or how variables respond to press perturbations. Additional informa-
tion—ordinal, interval, or quantitative specification of the aij—is usually required to
derive these properties. Loop analysis partially ameliorates this difficulty by pin-
pointing the additional information required to determine whether a system exhibits
these properties. This helps focus the limited resources available to scientists to-
wards those measurements needed to make such a determination. The quantity of
information required, however, amplifies with model complexity. Specifically, the
frequency additional information is required and the number of aij for which it is
increases dramatically with the number of model variables, parameters, and non-null
interactions between them. For models with more than five variables or

22 There are some exceptions. In the special case that the perturbed parameter is strictly increasing
or decreasing, subsequent changes in variables can be approximated by determining their change at
successive values of the parameter (Levins 1974, 1975b), but only if the new system would establish
an asymptotically stable point equilibrium at each new parameter value. The range of parameter
values for which this holds depends upon how the dynamics of the system change as the parameter
continues to increase or decrease. Flake (1980) has also shown that loop analysis can be extended
using Laplace transforms to analyze the effects of some time-varying and periodic perturbations.
This extension requires the precise mathematical form of these perturbations be specified, however.
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predominantly non-null interactions between them, Dambacher et al. (2003b, 81)
suggest that, ‘‘signed digraph analysis grows not just exponentially, but factorial-
ly.’’23 Samuelson (1947, 26), an economist, was perhaps the first to recognize the
difficulty this posed for qualitative analysis: ‘‘It can be seen then that purely quali-
tative considerations [in this case sign-directed relations] cannot take us very far as
soon as the simple cases are left behind.’’

Levins recognized this difficulty (Puccia and Levins 1985, 90 and 119–120). Since
he intended loop analysis to be a method for modeling complex systems, Levins
stressed the utility of lumping distinct variables into aggregate variables, and other
model simplification strategies. Based partly on common sense and partly on his
wealth of experience in scientific modeling, Levins offered several suggestions about
when such simplifications are appropriate (Puccia and Levins 1985, 79–84). These
suggestions were intended as heuristic guidelines for model simplification, and they
eliminate unnecessary model complexity; they do not, nor should they, eliminate
model complexity necessary to represent the complex system being modeled ade-
quately. The guidelines cannot, therefore, circumvent the limitations of loop analysis
when applied to complex systems.

The limitations of loop analysis considered above do not uniquely single loop
analysis out among other qualitative or quantitative modeling methods as the one
with serious limitations. Systems with large numbers of highly interconnected parts
present formidable challenges for any modeling strategy, especially if they are
governed by non-linear dynamics. Other methods of qualitative analysis developed
by economists, for instance, also make restrictive assumptions, such as requiring the
system be an optimizing process or that it exhibit purely competitive dynamics.24

Like these methods, however, the restricted scope and weak evaluative power of
loop analysis for complex systems limit the role it can play in scientific modeling.

6. Conclusion

Scientific models must be assessed with respect to the purposes for which they were
developed. These purposes are often specific: to find the factors responsible for some
pattern, to identify the best way to manipulate a system to achieve some result or do
so most efficiently, etc. This specificity is a characteristic feature of engineering
research where the goal is usually to resolve a particular problem, such as to increase
the tolerance of designed structures like buildings to environmental disturbances like
earthquakes, or to minimize the heat generated by a microprocessor.

Specificity is also crucial when the modeling objective is to resolve a clearly
defined scientific debate. Resolving such debates usually requires devising and
testing quantitative models with definite mathematical structure to evaluate com-
peting, specific hypotheses about some phenomenon. Doing so often involves large
amounts of quantitative data, and quantitative methods of analysis for testing the
models’ predictions. Qualitative analysis is consequently ill-suited to this task. In the
context of the adaptationism debate, for instance, Orzack and Sober (1993) were

23 It is unspecified whether this refers to the expected number of interaction coefficients appearing
in the conditions required for local asymptotic stability, the number of loops in the model, or
something else.
24 A survey of these methods is impossible here. See Hale et al. (1999).
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correct to point out that only proper testing of quantitative models could resolve the
debate given the nature of the issue.

The inability to resolve such debates does not, however, manifest a conceptual or
methodological failing, nor does it entail qualitative analysis cannot contribute to
their resolution. As Levins (1974, 1998; Puccia and Levins 1985) has repeatedly
emphasized, qualitative analysis complements rather than supplants quantitative
analysis. Orzack and Sober (1993, 542–543) observed, for example, that qualitative
optimality models have enhanced biologists’ understanding of the process of adap-
tation, even though they cannot decide the adaptationism debate.

It might be thought that the limited scope of loop-theoretic evaluation of stability
and the effects of press perturbation indicates an unavoidable lack of generality of
qualitative modeling methods, and an accordingly narrow role for them within sci-
ence in general. This conclusion should be resisted. As noted in Section 2, loop
analysis is only one of a wide array of different possible qualitative methods. There
are thus two ways of achieving greater generality with qualitative modeling. First,
new qualitative methods may be developed with greater scope. With respect to
qualitative stability analysis, for instance, what seems to be needed is a qualitative
version of Lyapunov’s direct method. The basis of this method is Lyapunov’s (1992)
proof that the existence of a special kind of function in a region of a model’s state
space entails the stability of an equilibrium within that region.25 Whether such a
function, a Lyapunov function, exists for a given model depends upon the mathe-
matical structure of the model; different Lyapunov functions are required for dif-
ferent types of models. Since there is no restriction on the size of the region of the
model’s state space besides the existence of the Lyapunov function, the direct
method provides an effective way of evaluating stability properties of systems out-
side the local neighborhood of an equilibrium. Its qualitative counterpart would
involve proving the existence of a Lyapunov function using only qualitative prop-
erties of the form of interactions between variables (and parameters) and relations
between their values. It would then sometimes be possible to demonstrate the sta-
bility of equilibria in nonlocal domains based solely on qualitative model properties,
which loop analysis cannot do.

Second, even if there are insurmountable obstacles to this general approach,26

several different qualitative methods may be developed that, taken together, have a
broad scope. To some degree, this seems to be the current state of affairs in
mathematical economics (see Athey et al. 1998; Hale et al. 1999). There is little a
priori or otherwise to suggest that both these strategies will inevitably fail. Despite
the limitations of loop analysis, therefore, Levins’ emphasis on the merits of a
qualitative approach to scientific modeling remains prescient and compelling.
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Alexander Moffett, Michael Weisberg, and an anonymous reviewer for helpful comments.

25 See Hahn (1963) and for an exposition of this method.
26 With respect to a qualitative version of Lyapunov’s direct method, this may be the case. The
construction of a Lyapunov function for a given model usually depends on the precise details of the
model’s mathematical form.
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