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Qualitative Scientific Modeling and
Loop Analysis

James Justus†‡

Loop analysis is a method of qualitative modeling anticipated by Sewall Wright (1921)
and systematically developed by Richard Levins. In Levins’ (1966) distinctions between
modeling strategies, loop analysis sacrifices precision for generality and realism. Besides
criticizing the clarity of these distinctions, Orzack and Sober (1993) argued qualitative
modeling is conceptually and methodologically problematic. Loop analysis of the sta-
bility of ecological communities shows this criticism is unjustified. It presupposes an
overly narrow view of qualitative modeling and underestimates the broad role models
play in scientific research, especially in helping scientists represent and understand
complex systems.

1. Introduction. Levins (1966) claimed scientific modeling can maximize
at most two of three virtues: generality, realism, and precision. Models
sacrificing generality (SG) make precise quantitative predictions about
specific systems and maximize realism by representing as many system
details as possible. Models sacrificing realism (SR) make unrealistic as-
sumptions so scientists can describe systems with general, mathematically-
tractable equations that produce precise quantitative predictions.

Qualitative models that sacrifice precision (SP) abandon quantitative
accuracy and focus on qualitative relations between model variables. Loop
analysis, one method of qualitative modeling systematically developed by
Richard Levins (1974, 1975, 1998; Puccia and Levins 1985), consists of
the analysis of signed digraphs (directed graphs) representing whether
increases in individual variables induce qualitative increases or decreases
in other variables, or leave them unchanged.

Levins (1966) did not explicitly define ‘generality’, ‘realism’, and ‘pre-
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cision’, which prompted Orzack and Sober (1993) to criticize the clarity
of his distinctions between modeling strategies. They also criticized that
the kind of qualitative testing involved in qualitative modeling is con-
ceptually and methodologically problematic since:

1. Grounds for accepting qualitative predictions are often unstated;
and,

2. Unlike quantitative testing, qualitative testing cannot determine how
well models account for data.

This paper defends qualitative modeling against this criticism. Section 2
briefly considers some weaknesses of SG and SR modeling of complex
systems that qualitative modeling avoids. After defining Lyapunov sta-
bility, Section 3 illustrates how loop analysis, which is an example of only
one kind of qualitative modeling,1 evaluates the stability of mathematical
models of ecological communities. Based on this analysis, Section 4 argues
Orzack and Sober’s (1993) criticism is unwarranted. Specifically, the basis
of (1) as a criticism of qualitative testing is dubious, and (2) presupposes
an overly narrow view of qualitative modeling, and the function of models
within science in general.

2. Limitations of Quantitative Modeling of Complex Systems. For Levins,
successful scientific research requires several different modeling strategies,
each exhibiting strengths and weaknesses relative to different purposes
and contexts. In the context of modeling complex systems to understand
their dynamics, Levins thought SG and SR modeling, unlike qualitative
modeling, face significant difficulties.

Levins (1966, 421) considered three disadvantages of SG models:

1. Their construction requires measurement of an intractable number
of parameters, many requiring several years to measure precisely.

2. Even if these parameters could be measured, the resulting differential
or difference equations would be analytically insoluble and exhaust
the numerical solution capabilities of computers.

3. Even if soluble, their solutions, “would have no meaning for us.”

Disadvantage 1 concerns the practical problem of maximizing model re-
alism by maximizing the number of parameters measured. This is usually
infeasible within the monetary and temporal constraints of scientific re-
search. Disadvantage 2 concerns the unmanageability of such complicated
models. The sheer size and intractability required to maximize realism

1. For other examples, see Sarkar and Garson 2004; Arrow 1984, Chapters 3 and 6;
Arrow and Raynaud 1986. Weisberg 2004 discusses the role of qualitative modeling
within chemistry.
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and precision made Levins skeptical SG models would provide scientifi-
cally useful representations of complex systems.2

Disadvantage 3 concerns the limited explanatory power of SG models.
Complicated models that are difficult to manage are also difficult to com-
prehend. Without a clear comprehension of their structure and dynamics,
SG models often frustrate rather than enhance understanding.3 Botkin
(1977) emphasized this when criticizing the “systems approach” to eco-
system modeling which, historically, was the target of Levins’ (1966) crit-
icisms of SG modeling.

SR modeling faces different disadvantages. Unlike SG models, SR mod-
els focus on small sets of salient system components and thereby avoid
Disadvantages 1–3. This restricted focus is achieved through idealization:
ignoring some system components and interactions, treating interactions
as instantaneous, representing discrete components with continuous var-
iables, etc. Scientists can then represent real-world systems with idealized
but thoroughly studied, well understood mathematical models that pro-
duce precise quantitative predictions. The underlying assumption, Levins
(1966) suggested, is that differences between predictions and observations
will identify what idealizations preserve accurate description.4

Unrealistic idealizations, however, make it uncertain whether modeling
results demonstrate properties of the represented system or are byproducts
of unrealistic idealizations. Since it is often unclear what properties are
primarily responsible for system dynamics, idealizations may significantly
mischaracterize its most important features. Consequently, an enhanced
sense of understanding conveyed by an SR model may fail to be about
the system it is intended to represent. This especially troubled Levins since
he believed biologists often uncritically emulated mathematically sophis-
ticated models of physics to ensure their modeling was mathematically
rigorous, with the consequence that, “theoretical work often diverged too
far from life and became exercises in mathematics inspired by biology
rather than an analysis of living systems” (1968, 4). Levins understood
that all modeling involves idealization. His affinity for qualitative mod-
eling, however, stemmed from its avoidance of the substantial kinds of
idealizations SR models make. Loop analysis, Section 3 shows, achieves
mathematical rigor with a comparatively minimal sacrifice of realism.

2. Advances in computation and simulation techniques mitigate this difficulty and
Levins’ (1998) recent work on loop analysis does not make this claim.

3. As literally stated, Disadvantage 3 is too strong. It entails solutions found by sim-
ulation for complex systems are completely incomprehensible, which is implausible
given their importance in physics (Winsberg 2001).

4. Wimsatt’s (1987) analysis of the Morgan school’s development of ‘chromosomal
mechanics’ provides an excellent account of this modeling methodology.
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3. Qualitative Stability Criteria and Loop Analysis. Consider a system
represented by n differential equations:

dx (t)i p F(x , . . . , x , . . . , x ; c , . . . , c , . . . , c ), (1)i 1 k n 1 j mdt

where cj are parameters, xk are variables, , and , . At1 ≤ j ≤ m 1 ≤ i k ≤ n
equilibrium,

dx (t)i(Gi) p 0 .[ ]dt

In general, systems at equilibrium can be globally or locally stable.
Informally, a system at a globally stable equilibrium returns to equilibrium
following any disturbance. It is improbable any ecological systems are
globally stable, but probable some are locally stable. Local stability de-
pends upon how systems behave in the local neighborhood of an equi-
librium. To analyze this behavior, the equations of (1) can be linearized:

dx(t)
p Ax(t), (2)

dt

where x(t) is the vector of n variables and A is the n#n matrixx , . . . , x1 n

of constant real coefficients aij derived from the nonlinearized interaction
terms of the Jacobian matrix, evaluated at equilibrium.c p �F /�xij i j

By definition, an equilibrium x* is Lyapunov stable iff

(G� 1 0) (ad 1 0) (Fx(t ) � x*F ! d ⇒ (Gt ≥ t ) (Fx(t) � x*F ! �)), (3)0 0

where x(t) is a solution of (2) with initial conditions x(t0), and des-F 7 F
ignates a Euclidean distance metric. Informally, (3) says x* is Lyapunov
stable if a system beginning in a neighborhood of x* remains near it after
perturbation. By definition, x* is asymptotically Lyapunov stable iff (3)
and as .x(t) r x* t r �

Whether x* is locally asymptotically Lyapunov stable (hereafter ‘sta-
ble’) depends upon the eigenvalues of A. These are scalar values l such
that , the roots of the characteristic polynomial of A.det (A � lI) p 0
Lyapunov ([1892] 1992) proved x* is stable iff

Rel (A) ! 0 for i p 1, . . . , n, (4)i

where Reli(A) designates the real part of li, the ith eigenvalue of A.
The Routh-Hurwitz stability criterion (Gantmacher 1960) extends Lya-

punov’s theorem and is the basis of Levins’ account of stability in loop-
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theoretic terms. It states (4) holds iff every Hurwitz determinant,

F F. . .b b b b1 3 5 2i�1
. . .b b b b0 2 4 2i�2F F
. . .F FH p 0 b b bi 1 3 2i�3

_ _ _ 5 _F F
0 0 0 bF Fi

( ), is positive, where the bi are the coefficients ofi p 1, . . . , n det (A �
.lI)

In models of ecological communities, aij from (2) represents the effect
of species j on species i.5 Its quantitative value represents the effect’s
magnitude and its sign represents whether the effect is positive or negative.
Unfortunately, Lyapunov’s theorem and the Routh-Hurwitz criterion pro-
vide little help in assessing whether communities are stable. The problem
is that determining whether they are satisfied usually requires information
about the quantitative values of the aij, which is typically unavailable and
cannot be feasibly obtained. Measuring all these values, for instance,
requires measurement of n2 species interactions, each of which would
require numerous manipulative experiments.6 Coefficient signs are more
easily determined. For instance, for competitors, aij, and for pred-a ! 0ji

ator and prey, and .a 1 0 a ! 0ij ji

Since coefficient signs often can be determined, hypotheses about eco-
logical communities often can be evaluated without quantitative data.
One such hypothesis is whether community stability depends on the quan-
titative strengths of species interactions or their qualitative structure in
the community alone. Whereas SG and SR modeling requires quantitative
data which is unavailable in this context, the sacrifice of quantitative
precision makes qualitative modeling well suited to analyze this
hypothesis.

Loop analysis is based on equivalence between matrices of constant
coefficients and digraphs, first anticipated by Wright (1921). For systems
represented by (2), correspond to digraph vertices. If A rep-x , . . . , x1 n

resents qualitative information about species interactions, aij takes values
�1, �1, or 0 to represent positive, negative, or null effects of species j
on species i. These values determine what vertices are connected by edges
and the edges’ direction and effect. If , designates positivea p 1 x r xij j i

5. Specifically, aij represents the effect of all species j populations on all species i
populations. In metapopulation ecology, however, aij could represent the effects between
different populations of one species.

6. The extensive exclusion experiments utilized in one of the first such quantitative
measurements (Brown and Davidson 1977) indicates the magnitude of the difficulty.
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Figure 1.

effect; if , designates negative effect; if , no edgea p �1 x �• x a p 0ij j i ij

exists. To illustrate, the matrix for species N, P, and H,

a a a �1 �1 �1NN NH NP   
a a a p �1 �1 �1 ,HN HH HP   
a a a 0 �1 0   PN PH PP

corresponds to the digraph in Figure 1. A loop is a series of directed edges
from one vertex to itself crossing no intermediate vertices more than once.
The number of edges is a loop’s length and disjunct loops share no vertices.

, and aNN, for instance, are disjunct loops of length 2 and 1.a aHP PH

The equivalence between matrices and digraphs entails a correspon-
dence between matrix determinants and loops. For example, if

a a11 12A p ,[ ]a a21 22

, which is the difference between the product ofdet (A) p a a � a a11 22 12 21

length 1 loops and length 2 loops in the digraph of A. Levins (1975, 20)
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generalized this relationship to n-order matrices:

n

n�mdet (A) p (�1) L(m, n), (5)� �n
mp1 L(m,n)�Lm,n

where L(m, n) is the product of n coefficients forming m disjunct loops
and Lm,n is the set of all such products in the digraph of A. L(2, 4), for
instance, is the product of the four coefficients of two disjunct loops. With
this generalization, Levins (1975, 21) defined “feedback at level k” in n-
variable systems:

k

m�1F (A) p (�1) L(m, k), (6)� �k
mp1 L(m,k)�Lm,k

where . Notice , the sum of the diagonal elements
n

1 ≤ k ≤ n F (A) p � a1 iiip1

of A, the length 1 loops.
According to Puccia and Levins (1985), feedback is a process by which

changes in variables induce changes in other variables that then affect the
variables originally changed. Positive feedback enhances change: increase
in variables induces further increase, and decrease induces further de-
crease. Negative feedback counteracts change: increase induces decrease,
and decrease induces increase.7

With this definition of feedback, Levins formulated the Routh-Hurwitz
criterion in loop-theoretic terms. (See Puccia and Levins 1985, Chapter
6.) An n-variable system is stable iff and(Gk ! n) (F ! 0),k

F F. . .�F �F �F �F1 3 5 2n�1
. . .�F �F �F �F0 2 4 2n�2F F
. . .F F0 �F �F �F 1 0.1 3 2n�3

_ _ _ 5 _F F
0 0 0 �FF Fn

The first condition requires negative feedback at every level and the second
requires stronger feedback at lower levels than higher ones. For instance,
for 3 variable systems the second condition requires .F F � F 1 01 2 3

One drawback of this loop-theoretic criterion is that quantitative data
are often required to determine whether it is satisfied. The system rep-

7. Levins’ understanding of feedback reveals a peculiar relationship between his sci-
entific commitment to realistic modeling and philosophical view of scientific concepts.
Levins intended loop analysis to preserve realism about the system being modeled, but
he did not believe the feedback concept utilized in loop analysis designated an objective
property of real-world systems (Wimsatt 1970, 252). Rather, Levins thought feedback,
and scientific concepts in general, are purely heuristic features of how systems are
represented (Cf. Wimsatt 2001).
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resented in Figure 1, for example, is stable iff , whicha a 1 a aNN HP NP HN

typically depends on their quantitative values. Furthermore, the proba-
bility quantitative data will be required, and the number of variables for
which it will, increases with the number of model coefficients (Dambacher
et al. 2003).

This limitation of, ultimately, the Routh-Hurwitz criterion prompted
searches for completely qualitative stability criteria, which economists
Quirk and Ruppert (1965) found first. They defined the sign-pattern of a
matrix A as its pattern of coefficients (�1, �1, 0). B is sign-similar to A
iff their sign-patterns are identical. A is sign-stable iff the eigenvalues of
every matrix sign-similar to it satisfies (4). That is, sign-stable matrices
remain stable with any specification of the quantitative values of their
entries preserving their sign-pattern. Quirk and Ruppert (1965) proved a
real n#n matrix with negative diagonals, i.e., (Gi) ( ), isA p [a ] a ! 0ij ii

sign-stable iff

(Gi, j) [(i ( j) ⇒ (a a ≤ 0)], (7)ij ji

and

there are no loops of length ≥ 3. (8)

Other more complicated necessary and sufficient conditions were found
(see Jeffries 1974 and Logofet 1993), but they were similarly biologically
unrealistic (Jefferies 1974). The restriction to negative diagonals requires
every species be self-damping, which entails stable communities cannot
contain species exhibiting Allee effects, and (7) requires communities not
contain competitors or symbionts; both are extremely implausible. It is
probable, therefore, that community stability depends on the quantitative
strengths of species interactions, not merely their qualitative structure.

As this limited exposition indicates, loop analysis is a rigorous method
of scientific analysis. Establishing (7) and (8) and other conditions entail
and are entailed by sign-stability, for instance, requires sophisticated math-
ematical proof. Before their critique of qualitative modeling, however,
Orzack and Sober (1993, 538), characterized a qualitative model as one
that, “makes only a qualitative prediction,” and, “In this sense, these
models are not mathematical.” Senses differ about the exact meaning of
the term, but their claim is indefensible if intended to support the criticism
that qualitative modeling, unlike quantitative modeling, lacks rigor be-
cause it is not ‘mathematical’.8 Quantification is not necessary for rigor
in science any more than in mathematics. This was understood by Levins,

8. Orzack and Sober did not provide an account of what makes models mathematical.
Given the previous statement, therefore, it is difficult to make sense of their apparently
inconsistent claim there are “qualitative mathematical models” (1993, 542).
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who considered loop analysis to be a form of qualitative mathematics of
functions only specified as increasing/decreasing, or convex/concave, with-
out quantitative precisification (Levins 1998). Similarly, Simon (1991, vi)
characterized qualitative analysis as, “the mathematics of monotonic
transformations, or . . . the mathematics of ordinally measured quanti-
ties.” Although not explicitly stated, the supposition that rigorous sci-
entific modeling requires quantification seems to underlie Orzack and
Sober’s (1993) criticisms of qualitative modeling.9

4. Orzack and Sober’s Criticisms of Qualitative Modeling. After criticiz-
ing Levins’ (1966) distinctions between modeling strategies10 and concept
of robustness, Orzack and Sober (1993) argued that the qualitative testing
involved in qualitative modeling is conceptually and methodologically
problematic. Specifically, they criticized that, although qualitative testing
can be useful,

1. “Grounds for accepting qualitative predictions are often left un-
stated. One consequence is that investigators sometimes use con-
tradictory criteria to judge the same model. . . . Although this is
also a potential problem in quantitative testing, [this] approach usu-
ally leads biologists to state test criteria explicitly” (1993, 542).

2. “The most important defect in qualitative testing, however, is that
it fails to allow one to answer the most important question about
a particular model: How well does that model explain the data?
Qualitative testing may show some models are incompatible with
data, but only quantitative testing of quantitative models can de-
termine what one if any sufficiently explains the data” (1993, 542).

Regarding the adaptationism debate, Orzack and Sober (1993, 543) ex-

9. Qualitative modeling can be distinguished from qualitative analysis. The former an-
alyzes models consisting of strictly qualitative relations and assumptions; the latter
analyzes the qualitative structure of models consisting of some quantitative features.
Since Lyapunov’s ([1892] 1992) proof refers to real variables and—although uninstan-
tiated—in this sense could be considered quantitative, one could object that loop
analysis of community stability only vindicates qualitative analysis, not qualitative
modeling. (I owe this potential objection to Sahotra Sarkar.) This does not, however,
support Orzack and Sober’s criticism for two reasons. First, contrary to their inter-
pretation, Levins (1966) did not believe precision was a dichotomous model attribute
(Levins 1993) and he would think, therefore, that the quantitative/qualitativedistinction
and, derivatively, the qualitative modeling/analysis distinction, were matters of degree
not kind. Second, and most importantly, many other examples of rigorous qualitative
modeling do not appeal to real variables or similarly quantitative assumptions. Such
modeling appeals only to ordinal relationships or other qualitative features. See ref-
erences in Footnote 2.

10. For responses see Levins 1993 and Odenbaugh 2003.
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plained that quantitative models of traits can be tested with data to de-
termine whether, “natural selection has been so important in a trait’s
evolution that nonselective forces may be safely ignored.” Qualitative
testing, however, is incapable of such determinations since it, “fails to
allow one to discriminate between the claim that natural selection is an
important cause of what we observe and the claim that natural selection
suffices as an explanation for the trait.” Orzack and Sober (1993, 543)
concluded their criticisms of qualitative optimality models of adaptation
with a general indictment: “there is no more compelling reason to reassess
the view of models endorsed in Levins’ 1966 paper than the fact that the
idea of qualitative modeling has hindered the development of an unbiased
assessment of the truth [of adaptationism].”

As a general critique of qualitative compared to quantitative modeling,
the first problem is that the data required for quantitative testing often
do not exist and cannot be collected feasibly. Besides ecological com-
munities, this is often true when system dynamics are complex, and for
this reason Levins stressed the utility of loop analysis in modeling other
complex systems, such as social systems (Puccia and Levins 1985). In
some scientific fields, furthermore, the relevant data are essentially qual-
itative (e.g., ordinal) and interpreting them quantitatively is indefensible.
Social sciences that model agent behavior by analyzing strictly ordinal
information about preference rankings are a clear example. Thus, even
if some scientific issues, like the adaptationism debate, can be properly
assessed only by quantitative testing with adequate quantitative data, this
does not justify a blanket critique of qualitative modeling.

In general, criteria by which models should be evaluated, for instance
in assessing whether models can be simplified, should reflect the, “reality
to be described [and] the state of the science” (Levins 1966, 422). Com-
parative criticism of modeling strategies, therefore, is only justified when
both strategies are appropriate for the context. Criticism 2 fails to ap-
preciate that qualitative modeling is well suited to scientific fields in which
quantitative modeling is infeasible or inappropriate.

The second problem is that Criticism 1 is dubious as a criticism of
qualitative modeling. Orzack and Sober (1993) only briefly discussed the
difficulty, but cited Orzack 1990 in support. Orzack (1990) analyzed sev-
eral studies of Werren’s (1980) extension of Hamilton’s model of mating
competition.11 Werren (1980) tested his model, as did subsequent studies,

11. Werren modified Hamilton’s model to allow for variable brood sizes, which was
more realistic and made modeling mating strategies of the parasitic wasp Nasonia
vitripennis possible. Werren estimated a primary model variable, ratio of male to female
eggs laid in previously unparasitized hosts, and predicted the ratio for eggs laid in
previously parasitized hosts (the ‘second sex ratio’ following Orzack 1990). Previous
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by plotting observations of the second sex ratio of parasitic wasps against
predicted values and visually assessing their “fit.” Based on this assess-
ment, Werren (1980, 1158) judged, “The sex-ratio data show the trend
predicted,” without presenting any supporting statistical tests. Subsequent
studies with similar results that also presented no statistical tests, however,
suggested different conclusions. Orzack (1990) correctly identified two
problems with this method of model evaluation: visual appearance of fit
depends significantly on presentation scale, and judgments about what
can be concluded from such fit vary dramatically.

As criticisms of qualitative modeling, however, these problems are mis-
placed. Werren (1980) specified his model’s mathematical form, measured
the variable needed to make quantitative predictions, and tested those
predictions against quantitative data. In Orzack and Sober’s (1993, 535–
536) classification of model types, Werren’s (1980) model is instantiated
and generates quantitative point predictions; it is not qualitative. Orzack’s
(1990) criticisms, therefore, target only one, obviously flawed, type of
qualitative test, visual inspection of fit, applied to a quantitative model.

In fact, Orzack and Sober’s (1993) view of qualitative testing seems
limited to this kind of test. After Criticism 1, which they believed highlights
a general deficiency of qualitative testing, they continued, “Qualitative
assessment of fit can also be highly dependent upon the manner of graph-
ical presentation” (1993, 542). Qualitative testing should not, however, be
narrowly identified with problematic visual assessments of fit. As Section
3 and other examples make clear, qualitative testing can be a rigorous
method of scientific analysis. What Orzack (1990) revealed was bad sci-
entific methodology, not methodological problems with qualitative mod-
eling. The appropriate test of a significant fit between observations and
quantitative predictions is regression analysis, in Werren’s (1980) case,
nonlinear regression. That regressions were not performed justifies sus-
picion that results were not significant and this was the reason these studies
appealed to visual assessments. Application of poor qualitative tests when
quantitative data are available and quantitative statistical tests should be
performed does not, however, support a general indictment of qualitative
modeling.

The final problem is that Criticism 2 presupposes an unjustifiably nar-
row view of the function of models within science. Unlike Criticism 1,
Criticism 2 focuses on the limitations of what qualitative models can show
even if they are properly testable. Even if, contrary to Criticism 1, testing
qualitative models is no more problematic than testing quantitative mod-

studies showed Nasonia vitripennis could detect hosts were previously parasitized and
subsequently laid greater proportions of male eggs than in previously unparasitized
hosts (Werren 1980).
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els, Criticism 2 suggests some scientific issues may be resolvable by the
latter but not the former. Regarding adaptationism, for instance, Orzack
and Sober (1993, 543) claimed the fundamental flaw of qualitative models
is their inability to provide sufficient explanations of traits.12 This is a
limitation of qualitative modeling, but it should not be exaggerated. First,
as Section 3 shows, it does not apply to all scientific questions. Second,
it does not demonstrate qualitative modeling has hindered resolution of
the adaptationism debate, or other debates it alone cannot resolve. Besides
making qualitative predictions, qualitative models help scientists under-
stand phenomena, which is crucial in developing scientific explanations
and, ultimately, resolving such debates. The understanding qualitative
models provide is particularly useful since, unlike SG models, it is gen-
eralizable and, unlike SR models, it reflects realistic assumptions about
the system represented.13

Most accounts of scientific explanation agree that enhancing under-
standing is essential to explanation but differ about the kind of under-
standing required. Without broaching this issue, it should be noted that
Sober takes a broad view of the kinds of understanding involved in sci-
entific explanation, unlike causal accounts that narrowly require under-
standing of the causal processes underlying phenomena. Sober (1983), for
instance, cogently argued that equilibrium explanations are counterex-
amples to such causal accounts. Considering differences between causal
and equilibrium explanations of 1 : 1 sex ratios, he explained (1983, 207):

The causal explanation focuses exclusively on the actual trajectory
of the population; the equilibrium explanation situates that actual
trajectory (whatever it may have been) in a more encompassing struc-
ture. It is in this way that equilibrium explanations can be more
explanatory than causal explanations even though they provide less
information about what the actual cause was. This difference arises
from the fact that explanations provide understanding [sic], and un-

12. As they use the term, ‘sufficient explanation’ focuses exclusively on model predic-
tions according with data. That qualitative models assist in understanding adaptation
(1993, 542–543), was considered independent of whether they sufficiently explain data
on traits.

13. This does not deny the role SR models may play in developing realistic models.
Wimsatt (1987) convincingly showed models that are, “oversimplified, approximate,
incomplete, and in other ways false” (28), are important and perhaps often necessary
tools in constructing realistic models. Each function of ‘false models’ he listed, however,
involves a clear recognition of their lack of realism. Consequently, the understanding
they provide must be carefully qualified.
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derstanding can be enhanced without providing more details about
what the cause was.14

Sober’s argument supports rather than contradicts the view that (quali-
tative) loop-theoretic explanations of community stability are scientifically
sound. Satisfaction of the conditions of Quirk and Rupert’s proof, for
example, entails a system is sign-stable, but is consistent with an infinite
number of quantitative specifications of its coefficient values. Loop anal-
ysis does not pinpoint particular ‘causal scenarios’ of stable system be-
havior as actual but does ‘situate’ them within certain qualitative con-
straints on how system components interact. Why then is Sober critical
of qualitative modeling a decade later if, as his argument seems to affirm,
loop analysis and other qualitative modeling methods enhance scientists’
understanding and help them develop scientific explanations?

One answer may be a narrow conception of qualitative modeling and
implicit assumption it lacks rigor already discussed. A second may lie in
a general tension between Levins’ conception of the principal goal of
qualitative modeling and the narrow view of scientific modeling Orzack
and Sober’s (1993) analysis seems to presuppose. For Puccia and Levins
(1985, 4), qualitative modeling, “stresses qualitative understanding as the
primary goal, rather than numerical prediction.” This prioritizes enhanc-
ing understanding over the fact that only quantitative modeling can, for
some debates, fully resolve them, as emphasized by Orzack and Sober
(1993). In contrast, Orzack and Sober (1993) seem to assume that en-
hancing understanding is a secondary objective of modeling. That qual-
itative models, for instance, “play an important role in modern efforts to
understand adaptation” (Orzack and Sober 1993, 543), which was men-
tioned but not elucidated, did not mitigate their general criticism that,
“the idea of qualitative modeling has hindered the unbiased assessment
of the truth” about adaptationism.

The narrow view of scientific modeling that motivates this criticism is
indefensible. Loop analysis, for instance, helps pinpoint what model co-
efficients should be measured to answer specific questions, identifies plau-
sible hypotheses about system behavior and provides reasons to reject
others, and enhances understanding of ecological systems with complex
dynamics. Besides the discussion in Section 3, two additional examples
are illustrative:

14. For Sober (1983), ‘encompassing structures’ are sets of disjunctions of possible
‘causal scenarios’. Causal explanations specify what causal scenario is actual, equilib-
rium explanations do not.
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1. If a digraph is not sign-stable, the feedback equations (6) specify
what interaction coefficients stability depends upon and identify
qualitative restrictions on their quantitative values. Since most quan-
titative values cannot be measured feasibly in complex systems, loop
analysis helps focus limited resources on measuring those needed to
evaluate system stability.

2. Loop analysis provides a method for determining how equilibrium
values of model variables will respond to changed extrinsic condi-
tions (Puccia and Levins 1985, Chapter 3). For example, if climate
change reduces the level of N in Figure 1, loop analysis can determine
the conditions under which equilibrium values of P or H will increase
or decrease. Sometimes this can then be used to identify correlations
between variables without quantitative data (Puccia and Levins
1985, Chapter 4). If known correlations differ from predicted ones,
the model structure can be modified to represent the system more
realistically.

Examples of these kinds show how qualitative modeling assists in scientific
research by broadly contributing to better representation and understand-
ing of modeled systems. That it has a different but complementary focus
compared with quantitative modeling does not indicate conceptual or
methodological deficiency.
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