CONSERVATION BIOLOGY

Conservation biology emerged in the mid-1980s as a science devoted to the conservation of biological diversity, or biodiversity. Its emergence was precipitated by a widespread concern that anthropogenic development, especially deforestation in the tropics (Gómez-Pompa, Vázquez-Yanes, and Guerera 1972), had created an extinction crisis: a significant increase in the rate of species extinction (Soulé 1985). From its beginning, the primary objective of conservation biology was the design of conservation area networks (CANs), such as national parks, nature reserves, and managed-use zones that protect areas from anthropogenic transformation.

Conservation biology, then, is a normative discipline, in that it is defined in terms of a practical goal in addition to the accumulation of knowledge about a domain of nature. In this respect, it is analogous to medicine (Soulé 1985). Like medicine, conservation biology performs its remedial function in two ways: through intervention (for example, when conservation plans must be designed for species at risk of imminent extinction) and through prevention (for example, when plans are designed to prevent decline in species numbers long before extinction is imminent).

The normative status of conservation biology distinguishes it from ecology, which is not defined in terms of a practical goal (see Ecology). Moreover, besides using the models and empirical results of ecology, conservation biology also draws upon such disparate disciplines as genetics, computer science, operations research, and economics in designing and implementing CANs. Each of these fields contributes to a comprehensive framework that has recently emerged about the structure of conservation biology (see "The Consensus Framework" below).

Different views about the appropriate target of conservation have generated distinct methodologies within conservation biology. How ‘biodiversity’ is defined and, correspondingly, what conservation plans are designed will partly reflect ethical views about what features of the natural world are valuable (Norton 1994; Takacs 1996). There exists, therefore, a close connection between conservation biology and environmental ethics.

The Concept of Biodiversity

‘Biodiversity’ is typically taken to refer to diversity at all levels of biological organization: molecules,
cells, organisms, species, and communities (e.g., Meffe and Carroll 1994). This definition does not, however, provide insight into the fundamental goal of conservation biology, since it refers to all biological entities (Sarkar and Margules 2002). Even worse, this definition does not exhaust all items of biological interest that are worth preserving: Endangered biological phenomena, such as the migration of the monarch butterfly, are not included within this definition (Brower and Malcolm 1991). Finally, since even a liberally construed notion of biodiversity does not capture the ecosystem processes that sustain biological diversity, some have argued that a more general concept of biological integrity, incorporating both diversity of entities and the ecological processes that sustain them, should be recognized as the proper focus of conservation biology (Angermeier and Karr 1994).

In response to these problems, many conservation biologists have adopted a pluralistic approach to biodiversity concepts (Norton 1994; Sarkar and Margules 2002; see, however, Faith [2003], who argues that this ready acceptance of pluralism confuses the [unified] concept of biodiversity with the plurality of different conservation strategies). Norton (1994), for example, points out that any measure of biodiversity presupposes the validity of a specific model of the natural world. The existence of several equally accurate models ensures the absence of any uniquely correct measure. Thus, he argues, the selection of a biodiversity measure should be thought of as a normative political decision that reflects specific conservation values and goals. Sarkar and Margules (2002) argue that the concept of biodiversity is implicitly defined by the specific procedure employed to prioritize places for conservation action (see “Place Prioritization” below). Since different contexts warrant different procedures, biodiversity should similarly be understood pluralistically.

Two Perspectives

Throughout the 1980s and early 90s, the discipline was loosely characterized by two general approaches, which Caughley (1994) described as the "small-population" and "declining-population" paradigms of conservation. Motivated significantly by the legal framework of the Endangered Species Act of 1973 and the National Forest Management Act of 1976, the small-population paradigm originated and was widely adopted in the United States (Sarkar 2005). It focused primarily on individual species threatened by extinction. By analyzing their distributions and habitat requirements, conservation biologists thought that “minimum viable populations” could be demonstrated, that is, population sizes below which purely stochastic processes would significantly increase the probability of extinction (see “Viability Analysis” below). It quickly became clear, however, that this methodology was inadequate. It required much more data than could be feasibly collected for most species (Caughley 1994) and, more importantly, failed to consider the interspecies dynamics essential to most species’ survival (Boyce 1992).

Widely followed in Australia, the declining-population paradigm focused on deterministic, rather than stochastic, causes of population decline (Sarkar 2005). Unlike the small-population paradigm, its objective was to identify and eradicate these causes before stochastic effects became significant. Since the primary cause of population decline was, and continues to be, habitat loss, conservation biologists, especially in Australia, became principally concerned with protecting the full complement of regional species diversity and required habitat within CANs. With meager monetary resources for protection, conservation biologists concentrated on developing methods that identified representative CANs in minimal areas (see “Place Prioritization” below).

The Consensus Framework

Recently, a growing consensus about the structure of conservation biology has emerged that combines aspects of the small-population and declining-population paradigms into a framework that emphasizes the crucial role computer-based place prioritization algorithms play in conservation planning (Margules and Pressey 2000; Sarkar 2005). The framework’s purpose is to make conservation planning more systematic, thereby replacing the ad hoc reserve design strategies often employed in real-world planning in the past. It focuses on ensuring the adequate representation and persistence of regional biodiversity within the socioeconomic and political constraints inherent in such planning.

Place Prioritization

The first CAN design methods, especially within the United States, relied almost exclusively on island biogeography theory (MacArthur and Wilson 1967) (see Ecology). It was cited as the basis for geometric design principles intended to minimize
extinction rates in CANs as their ambient regions were anthropogenically transformed (Diamond 1975). Island biogeography theory entails that the particular species composition of an area is constantly changing while, at an equilibrium between extinction and immigration, its species richness remains constant. The intention behind design principles inspired by the theory, therefore, was to ensure persistence of the maximum number of species, not the specific species the areas currently contained. However, incisive criticism of the theory (Gilbert 1980; Margules, Higgs, and Rafe 1982) convinced many conservation biologists, especially in Australia, that representation of the specific species that areas now contain, rather than the persistence of the greatest number of species at some future time, should be the first goal of CAN design. Computer-based place prioritization algorithms supplied a defensible methodology for achieving the first goal and an alternative to the problematic reliance on island biogeography theory in CAN design.

Place prioritization involves solving a resource allocation problem. Conservation funds are usually significantly limited and priority must be given to protecting some areas over others. The Expected Surrogate Set Covering Problem (ESSCP) and the Maximal Expected Surrogate Covering Problem (MESCSP) are two prioritization problems typically encountered in biodiversity conservation planning (Sarkar 2004). Formally, consider a set of individual places called cells $\{c_j : j = 1, \ldots, n\}$; cell areas $\{a_j : j = 1, \ldots, n\}$; biodiversity surrogates $\Lambda = \{s_i : i = 1, \ldots, m\}$; representation targets, one for each surrogate $\{t_i : i = 1, \ldots, m\}$; probabilities of finding s_i at c_j $\{p_{ij} : i = 1, \ldots, m; j = 1, \ldots, n\}$; and two indicator variables $X_j(j = 1, \ldots, n)$ and $Y_i(i = 1, \ldots, m)$ defined as follows:

$$X_j = \begin{cases}
1, & \text{if } c_j \in \Gamma; \\
0, & \text{otherwise};
\end{cases}$$

$$Y_i = \begin{cases}
1, & \text{if } \sum_{c_j \in \Gamma} p_{ij} > t_i; \\
0, & \text{otherwise}.
\end{cases}$$

ESSCP is the problem:

Minimize $\sum_{j=1}^{n} a_j X_j$ such that $\sum_{j=1}^{n} X_j p_{ij} \geq t_i \quad \forall s_i \in \Lambda$.

Informally, find the set of cells Γ with the smallest area such that every representation target is satisfied. MESCSP is the problem:

Maximize $\sum_{i=1}^{m} Y_i$ such that $\sum_{j=1}^{n} X_j = M$,

where M is the number of protectable cells. Informally, given the opportunity to protect M cells, find those cells that maximize the number of representation targets satisfied.

The formal precision of these problems allows them to be solved computationally with heuristic or exact algorithms (Margules and Pressey 2000; Sarkar 2005). Exact algorithms, using mixed integer linear programming, guarantee optimal solutions: the smallest number of areas satisfying the problem conditions. Since ESSCP and MESCSP are NP hard, however, exact algorithms are computationally intractable for practical problems with large datasets. Consequently, most research focuses on heuristic algorithms that are computationally tractable for large datasets but do not guarantee minimal solutions.

The most commonly used heuristic algorithms are "transparent," so called because the exact criterion by which each solution cell is selected is known. These algorithms select areas for incorporation into CANs by iteratively applying a hierarchical set of conservation criteria, such as rarity, richness, and complementarity. Rarity, for example, requires selecting the cell containing the region's most infrequently present surrogates, which ensures that endemic taxa are represented. The criterion most responsible for the efficiency of transparent heuristic algorithms is complementarity: Select subsequent cells that complement those already selected by adding the most surrogates not yet represented (Justus and Sarkar 2002). In policymaking contexts, transparency facilitates more perspicuous negotiations about competing land uses, which constitutes an advantage over nontransparent heuristic prioritization procedures such as those based on simulated annealing.

Methodologically, the problem of place prioritization refocused theoretical research in conservation biology from general theories to algorithmic procedures that require geographically explicit data (Sarkar 2004). In contrast to general theories, which abstract from the particularities of individual areas, place prioritization algorithms demonstrated that adequate CAN design critically depends upon these particularities.

Surrogacy

Since place prioritization requires detailed information about the precise distribution of a region's biota, devising conservation plans for specific areas would ideally begin with an exhaustive series of field surveys. However, owing to limitations of
time, money, and expertise, as well as geographical and sociopolitical boundaries to fieldwork, such surveys are usually not feasible in practice. These limitations give rise to the problem of discovering a (preferably small) set of biotic or abiotic land attributes (such as subsets of species, soil types, vegetation types, etc.) the precise distribution of which is realistically obtainable and that adequately represents biodiversity as such. This problem is referred to as that of finding surrogates or “indicators” for biodiversity (Sarkar and Margules 2002).

This challenge immediately gives rise to two important conceptual problems. Given the generality of the concept of biodiversity as such, the first problem concerns the selection of those entities that should be taken to represent concretely biodiversity in a particular planning context. These entities will be referred to as the true surrogate, or objective parameter, as it is the parameter that one is attempting to estimate in the field. Clearly, selection of the true surrogate is partly conventional and will depend largely on pragmatic and ethical concerns (Sarkar and Margules 2002); in most conservation contexts the true surrogate will typically be species diversity, or a species at risk. Once a set of true surrogates is chosen, the set of biotic and/or abiotic land attributes that will be tested for their capacity to represent the true surrogates adequately must be selected; these are estimator surrogates, or indicator parameters.

The second problem concerns the nature of the relation of representation that should obtain between the estimator and the true surrogate: What does ‘representation’ mean in this context and under what conditions can an estimator surrogate be said to represent adequately a true surrogate? Once the true and estimator surrogates are selected and a precise (operational) interpretation of representation is determined, the adequacy with which the estimator surrogate represents the true surrogate becomes an empirical question. (Landres, Verner, and Thomas [1988] discuss the import of subjecting one’s choice of estimator surrogate to stringent empirical testing.)

Very generally, two different interpretations of representation have been proposed in the conservation literature. The more stringent interpretation is that the distribution of estimator surrogates should allow one to predict the distribution of true surrogates (Ferrier and Watson 1997). The satisfaction of this condition would consist in the construction of a well-confirmed model from which correlations between a given set of estimator surrogates and a given set of true surrogates can be derived. Currently such models have met with only limited predictive success; moreover, since such models can typically be used to predict the distribution of only one surrogate at a time, they are not computationally feasible for practical conservation planning, which must devise CANs to sample a wide range of regional biodiversity. Fortunately, the solution to the surrogacy problem does not in practice require predictions of true-surrogate distributions.

A less stringent interpretation of representation assumes only that the set of places prioritized on the basis of the estimator surrogates adequately captures true-surrogate diversity up to some specified target (Sarkar and Margules 2002). The question of the adequacy of a given estimator surrogate then becomes the following: If one were to construct a CAN that samples the full complement of estimator-surrogate diversity, to what extent does this CAN also sample the full complement of true-surrogate diversity? Several different quantitative measurements can be carried out to evaluate this question (Sarkar 2004). At present, whether adequate surrogate sets exist for conservation planning remains an open empirical question.

Viability Analysis

Place prioritization and surrogacy analysis help identify areas that currently represent biodiversity. This is usually not, however, sufficient for successful biodiversity conservation. The problem is that the biodiversity these areas contain may be in irreversible decline and unlikely to persist. Since principles of CAN design inspired by island biogeography theory were, by the late 1980s, no longer believed to ensure persistence adequately, attention subsequently turned, especially in the United States, to modeling the probability of population extinction. These principles became known as population viability analysis (PVA).

PVA models focus primarily on factors affecting small populations, such as inbreeding depression, environmental and demographic stochasticity, genetic drift, and spatial structure. Drift and inbreeding depression, for example, may reduce the genetic variation required for substantial evolvability, without which populations may be more susceptible to disease, predation, or future environmental change. PVA modeling has not, however, provided a clear understanding of the general import of drift and inbreeding depression to population persistence in nature (Boyce 1992). Unfortunately, this kind of problem pervades PVA. In a trenchant review, for instance, Caughley (1994) concluded that the predominantly theoretical work done thus far in PVA had not been adequately tested with field data and that many of the tests that had been done were seriously flawed.
Models used for PVA have a variety of different structures and assumptions (see Beisinger and McCullough 2002). As a biodiversity conservation methodology, however, PVA faces at least three general difficulties:

1. Precise estimation of parameters common to PVA models requires enormous amounts of quality field data, which are usually unavailable (Fieberg and Ellner 2000) and cannot be collected, given limited monetary resources and the imperative to take conservation action quickly. Thus, with prior knowledge being uncommon concerning what mechanisms are primarily responsible for a population’s dynamics, PVA provides little guidance about how to minimize extinction probability.

2. In general, the results of PVA modeling are extremely sensitive to model structure and parameter values. Models with seemingly slightly different structure may make radically different predictions (Sarkar 2004), and different parameter values for one model may produce markedly different predictions, a problem exacerbated by the difficulties discussed under (1).

3. Currently, PVA models have been developed almost exclusively for single species (occasionally two) and rarely consider more than a few factors affecting population decline. Therefore, only in narrow conservation contexts focused on individual species would they potentially play an important role. Successful models that consider the numerous factors affecting the viability of multiple-species assemblages, which are and should be the primary target of actual conservation planning, are unlikely to be developed in the near future (Fieberg and Ellner 2000).

For these reasons and others, PVA has not thus far uncovered nontrivial generalities relevant to CAN design. Consequently, attention has turned to more pragmatic principles, such as designing CANs to minimize distance to anthropogenically transformed areas. This is not to abandon the important goals of PVA or the need for sound theory about biodiversity persistence, but to recognize the weaknesses of existing PVA models and the imperative to act now given significant threats to biodiversity.

Multiple-Criterion Synchronization

The implementation and maintenance of CANs inevitably take place within a context of competing demands upon the allocation and use of land. Consequently, successful implementation strategies should ideally be built upon a wide consensus among agents with different priorities with respect to that usage. Thus, practical CAN implementation involves the attempt to optimize the value of a CAN amongst several different criteria simultaneously. Because different criteria typically conflict, however, the term “synchronization” rather than “optimization” is more accurate. The multiple-constraint synchronization problem involves developing and evaluating procedures designed to support such decision-making processes.

One approach to this task is to “reduce” these various criteria to a single scale, such as monetary cost. For example, cost-benefit analysis has attempted to do this by assessing the amount an agent is willing to pay to improve the conservation value of an area. In practice, however, such estimates are difficult to carry out and are rarely attempted (Norton 1987). Another method, based on multiple-objective decision-making models, does not attempt to reduce the plurality of criteria to a single scale; rather it seeks merely to eliminate those feasible CANs that are suboptimal when evaluated according to all relevant criteria. This method, of course, will typically not result in the determination of a uniquely best solution, but it may be able to reduce the number of potential CANs to one that is small enough so that decision-making bodies can bring other implicit criteria to bear on their ultimate decision (see Rothley 1999 and Sarkar 2004 for applications to conservation planning).

JUSTIN GARSON
JAMES JUSTUS

References

Ferrier, S., and G. Watson (1997), An Evaluation of the Effectiveness of Environmental Surrogates and Modelling Techniques in Predicting the Distribution of Biological
CONSERVATION BIOLOGY

——— (2005), Biodiversity and Environmental Philosophy. New York: Cambridge University Press.

CONSTRUCTIVE EMPIRICISM

See Instrumentalism; Realism

CONVENTIONALISM

Conventionalism is a philosophical position according to which the truth of certain propositions, such as those of ethics, aesthetics, physics, mathematics, or logic, is in some sense best explained by appeal to intentional human actions, such as linguistic stipulations. In this article, the focus will be on conventionalism concerning physics, mathematics, and logic. Conventionalism concerning empirical science and mathematics appears to have emerged as a distinctive philosophical position only in the latter half of the nineteenth century.

The philosophical motivations for conventionalism are manifold. Early conventionalists such as Pierre Duhem and Henri Poincaré, and more recently Adolf Grünbaum, have seen conventionalism about physical or geometrical principles as justified in part by what they regard as the underdetermination of a physical or geometrical theory by